TASK 3 FLOUR WATER TREATMENT STUDY Eagle River Water Resource Study Municipality of Anchorage Water and Sewer Utilities 00 00011 TD 412 .E34 1981 no.3 The work with the sold of the sold with the sold of th IILL December 1981 # TASK 3 FLOUR WATER TREATMENT STUDY Appendix Eagle River Water Resource Study Municipality of Anchorage Water and Sewer Utilities US Department of Commerce NOAA Coastal Services Center Library 2234 South Hobson Avenue Charleston, SC 29405-2413 CH2M#HILL December 1981 This report was prepared under the supervision of a registered professional engineer. The preparation of this report was financed in part by funds from the Office of Coastal Zone Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, administered by the Diversion of Community Planning, Alaska Department of Community and Regional Affairs. To pursue the recommendations for further study that were prescribed in the <u>Metropolitan Anchorage Urban Study</u>, completed by the U.S. Corps of Engineers in 1979, the <u>Municipality</u> of Anchorage engaged CH2M HILL to conduct the Eagle River Water Resource Study. The purpose of the study is to investigate the potential sources of water supply from the Eagle River Valley. The original scope of the study comprised four tasks: | Task 1 | Well Drilling Program | |--------|-----------------------------------| | Task 2 | Preliminary Damsite Investigation | | Task 3 | Flour Water Treatment Study | | Task 4 | Transmission Main Design | Task 5, Eklutna Lake Alternative Water Source Evaluation, was added to the scope after the completion of the first four tasks. The report for each task is bound separately and is an appendix to the Executive Summary of the entire study. This Appendix III is the report for Task 3, Flour Water Treatment Study. ## ACKNOWLEDGMENTS We wish to express our appreciation to the Anchorage Water and Sewer Utilities staff for their contributions at the weekly meetings, updating of task scopes, and overall administrative assistance. Also, we thank Eklutna, Inc., for providing pertinent information at the weekly meetings and ready access to its property. The objectives of Task 3 are to (1) determine whether surface water from the Eagle River can be treated by conventional processes to remove glacial rock flour in order to meet current drinking water standards and (2) estimate costs for such treatment. Field and laboratory testing indicated that Eagle River water is treatable. Treatment facilities will require two different seasonal treatment processes that can be provided in a single water treatment plant. Transition between processes would occur in June and September correlating with melting of the glaciers at the river's headwaters. The recommended treatment processes are: (1) flocculation, sedimentation, high-rate filtration, and disinfection for the high-turbidity, glacial melt period; and (2) coagulation, high-rate filtration, and disinfection for the low-turbidity period during the colder months. To provide flexibility and to meet increasing water demands, the treatment plant could be constructed in three equal increments of 23.33 mgd each until the full capacity of 70 mgd was reached. Additions could be made when needed with little disruption to continuing operation of existing facilities. Capital costs and annual operation and maintenance costs were estimated in January 1981 dollars for a 23.33-mgd and a 70-mgd plant. These estimated costs are \$17.4 million (capital) and \$1 million (operation and maintenance) for a 23.33-mgd plant and \$41.4 million (capital) and \$2.7 million (operation and maintenance) for a 70-mgd plant. Prior to starting final design but after selection of Eagle River surface water as the source for additional water supply, we recommend the following: - o Pilot treatment plant tests for a full year, using at least a 1-mgd plant, to determine applicable process design criteria. This testing program should address iron, color, and turbidity removal; chemical dosages required over the full range of raw water parameters; filtration rates and media selection; and effectiveness of the recommended treatment processes. - o Investigation of disinfection alternatives to identify their trihalomethane formation potential (formation of potentially carcinogenic substances during the disinfection process). - o Identification of sludge disposal alternatives and the associated cost research. - o Selection of a treatment plant site. - Groundwater quality analysis and monitoring program for the old Eagle River dump. Alum Metallic salt, aluminum sulfate, coag- ulant used in removal of turbidity from water Coagulation A chemical process for combining particles into larger aggregates Degrees C Degrees centigrade 7° C = 45° F (Fahrenheit) and 20° C = 68° F **EPA** United States Environmental Protection Agency Flocculation The process of gentle mixing following coagulation so that particles come in contact with one another, aggregating or growing into larger more dense particles that settle readily Flour Material ground by glaciers Jar Testing A bench-scale procedure using multiple stirrers to compare coagulation and settling results in beakers having varying coagulant dosages million gallons per day mgd milligrams per liter mq/1 Unit Micron of measure equalling one thousandth of a millimeter Nephelometric Turbidity Unit - unit NTU for measuring turbidity Sedimentation Process by which coagulated > suspended matter separates from the water by subsidence and deposition THM Organic compounds formed when certain (trihalomethane) natural organic compounds (particularly humic acids) come in contact with chlorine. These compounds are thought to cause cancer in animals. Turbidity A measurement of water clarity by the amount of particulate matter in the sample #### CONTENTS | | • | Page | |---|---|---------------------------------| | | Preface | iii | | | Acknowledgments | V | | | Summary and Conclusions | vii | | | Definition of Terms | ix | | 1 | Introduction Background Purpose and Scope Site Description Limitations | 1-1
1-1
1-5
1-6
1-6 | | 2 | Data Collection and Evaluation
Sampling Site
Equipment
Tests | 2-1
2-1
2-1
2-1 | | 3 | Treatment Requirements and Recommendations Treatment Requirements Treatment Processes Treatment Plant Alternative Treatment Methods | 3-1
3-1
3-2
3-4
3-8 | | 4 | Cost Estimate | 4-1 | | 5 | Bibliography | 5-1 | | | bit A. USGS Water Quality Data | | ### **TABLES** | | | Page | |-------|--|------| | 2-1 | Chemical Analysis, Summer 1980 | 2-2 | | 3-1 | Water Quality Standards and Raw Eagle River
Quality | 3-1 | | 4-1 | Estimated Project Costs | 4-1 | | FIGUR | ES | | | 1-1 | Vicinity Map | 1-2 | | 1-2 | Projected Water Demand Increase 1980-2025 | 1-3 | | 2-1 | Air and Water Temperature | 2-3 | | 2-2 | Turbidity | 2-4 | | 2-3 | Turbidity vs. Dissolved and Suspended Solids | 2-6 | | 2-4 | рН | 2-7 | | 2-5 | Hardness and Alkalinity | 2-8 | | 2-6 | Coagulation of Water With High Turbidity | 2-9 | | 2-7 | Settled Water Turbidity vs. Alum Dosage | 2-10 | | 2-8 | Settled Water Turbidity vs. Alum Dosage at
Various Water Temperatures | 2-12 | | 2-9 | Settled Water Turbidity vs. Settling Time at
Various Water Temperatures | 2-13 | | 2-10 | Settled Water Turbidity vs. Temperature and Settling Time | 2-14 | | 3-1 | Treatment Process Options | 3-3 | | 3-2 | Typical Plant Flow Schematic | 3-5 | | 3-3 | Preliminary Plant Layout | 3-6 | #### BACKGROUND The population and, thus, the water supply needs of the metropolitan Anchorage area are growing rapidly. Presently, surface water from Ship Creek and groundwater wells in the Anchorage Bowl supply most of the municipality's water. However, if present growth trends continue, these sources will not meet future needs. In 1974 the United States Congress authorized the U.S. Army Corps of Engineers to perform the Metropolitan Anchorage Urban Study (MAUS), which was completed in 1979. The purpose of the MAUS was "to evaluate the adequacy of the developed water supply in the metropolitan Anchorage area, to determine future water demands, to assess sources for water supply development, and to formulate water supply plans to meet the increased future demand" (U.S. Army Corps of Engineers, 1979). The MAUS study area comprised the Anchorage Bowl and the area northeast to the town of Eklutna (Figure 1-1). The projected future water demand increases, determined in the MAUS, are shown in Figure 1-2. It is expected that by the year 2025 an additional 81.5 million gallons per day (mgd) of water will be needed to meet the increased demands in the area. The MAUS report identified many potential sources of supply: Eagle River Valley groundwater; Anchorage Bowl groundwater; and surface water from Campbell Creek, Ship Creek, Eagle River, and Eklutna Lake. Two plans were recommended by MAUS for future study. Plan IV, which ranked first environmentally and socially, included a combination of supply from Ship Creek, Anchorage Bowl groundwater, and Eklutna Lake. Plan VI, which ranked first on an economic basis, included an increased supply from Ship Creek, winter diversion from Eagle River, further development of Anchorage Bowl groundwater, and exploration for Eagle River Valley groundwater. To implement portions of these plans, the Municipality increased the water supply from within the Anchorage Bowl by recently constructing a 36-inch supply main to its water treatment plant from the military diversion facility on Ship Creek. Future developments are expected to include new wells to increase groundwater supply and the expansion of the capabilities of the plant that treats Ship Creek water. However, rapidly growing demands in Anchorage will require
development of a new source outside the Anchorage Bowl within the next 10 years. The Eagle River-Chugiak-Eklutna area, northeast of Anchorage, needs a new source now. Figure 1-1 Vicinity Map SOURCE: U.S. Corps of Engineers. 1979. Figure 1-2 Projected Water Demand Increase 1980-2025 As a result of the MAUS findings, the Municipality decided to investigate potential sources outside the Anchorage Bowl that could supply 70 mgd of water. On the basis of the MAUS population projection, this diversion would satisfy the demands of the entire study area through the year 2012. The future increases in water supply capacity that are expected to be developed within the Anchorage Bowl will delay the need for the full 70-mgd capacity of the new water source outside the Bowl until approximately the year 2020 or later. The Eagle River Valley is one possible source of water from outside the Anchorage Bowl that was suggested in the MAUS, Plan VI. To investigate the potential of this valley to supply the 70-mgd requirement, the Municipality engaged CH2M HILL to conduct the Eagle River Water Resource Study. The original scope of the study comprised four separate tasks: - o Task 1, a well drilling program to study the feasibility of developing the Eagle River Valley as a groundwater source - Task 2, a preliminary damsite investigation to determine the feasibility of developing the Eagle River as a surface water source - o Task 3, an investigation of the suitability of conventional treatment processes for removal of glacial rock flour from the Eagle River water - o Task 4, a preliminary design of a pipeline to transport groundwater or surface water from the Eagle River Valley to Anchorage Each task was conducted independently. The results of the first four tasks clearly indicate that a substantial dam and reservoir are required to develop Eagle River as a water source. Before committing itself to this dam and reservoir project, the Municipality of Anchorage increased the study scope to include Task 5, Eklutna Lake Alternative Water Source Evaluation. The purpose of Task 5 was to analyze the capability of Eklutna Lake to supply the 70 mgd of water to the area. Eklutna Lake is included in Plan IV of the MAUS. The lake is 30 miles northeast of downtown Anchorage and 16 miles northeast of the Eagle River (Figure 1-1). The report for each task appears as an appendix to the Executive Summary of the entire study. This Appendix III is the report for Task 3, Flour Water Treatment Study. #### PURPOSE AND SCOPE The objective of Task 3 is to investigate the suitability of the Eagle River as a potable water supply source, especially during the summer glacial melt period. It is intended to complement the MAUS and to augment water quality data collected by the United States Geological Survey (USGS) between 1948 and 1973. If the 70-mgd source of water for the Municipality of Anchorage is to come from Eagle River surface water (assuming it can be made potable), a plant to treat this water should be located near the river. This will allow potable water to be pumped south to the Anchorage Bowl and north to various communities as far away as Eklutna (Eagle River, Chugiak, Birchwood, Peters Creek, and Eklutna). Initially, when demands are still low, untreated water could be pumped to the existing Municipal Water Treatment Plant. However, it is likely that the Eagle River treatment plant would be constructed when the dam (Appendix II of this study) is constructed so the areas north can be served. To provide flexibility and to meet increasing demands, the treatment plant could be constructed in stages. This appendix contains the following: - o Results and evaluations of field and laboratory tests - o Identification of treatment criteria and the best treatment processes for both the summer glacial melt period and the winter clear water periods - o Estimated project and annual operation and maintenance costs for a treatment plant suitable for operation of the recommended processes The Municipality of Anchorage suggested that we study flour concentration, exchange capacity, particle size, mineral concentration, solution characteristics, and treatment agents and methods. These suggested areas of the study, except for the exchange capacity and particle size, influence the treatment required to produce potable water and were considered throughout this task. Exchange capacity relates to ion exchange, which is a common process in water softening. Eagle River water is naturally soft and does not require softening. Particle size, though of interest, does not relate directly to its removal. Particle size distribution was measured but is not considered as having a direct bearing on either the jar tests performed or the treatment conclusions resulting from these tests. Data were collected during the entire glacial melt period, June through September 1980. During this period, data were gathered regularly, and observations were made of variations in river water quality. #### SITE DESCRIPTION The Eagle, River, situated about 10 miles northeast of Anchorage, is fed primarily by the Eagle Glacier at the upper end of the Eagle River Valley (Figure 1-1). During the summer, melt water from the glacier contributes to high flows. This melt water contains glacial rock flour, which produces high turbidity in the water. In the winter months when the glacier is frozen, streamflow and turbidity are low. Its turbidity makes the Eagle River water unsuitable for drinking. A method for reduction of turbidity must be determined before the Eagle River can be identified as a potential drinking water source. #### LIMITATIONS This report was prepared for the use of the Anchorage Water and Sewer Utilities for specific application to the Eagle River Water Resource Study, Flour Water Treatment Study, in accordance with generally accepted engineering practice. No other warranty, expressed or implied, is made. In the event of any changes to the conditions considered under this study, the conclusions and recommendations contained in this report will not be considered valid unless the changes are reviewed and the conclusions or recommendations are modified or verified in writing by CH2M HILL. The purpose of this task is to investigate whether conventional treatment processes can remove glacial rock flour from Eagle River water. No design criteria were developed. The treatment concepts presented in this report are believed to be workable but are not refined enough for incorporation into a final design. Additional investigations, such as pilot testing, will be required prior to final design. #### SAMPLING SITE All samples for testing were collected from the right bank of the Eagle River immediately upstream of both the Glenn Highway bridge and the confluence of Meadow Creek with the Eagle River (Figure 1-1). This site was readily accessible during all weather conditions and permitted an undisturbed location to park the mobile laboratory. Because the river at this location is extremely turbulent; grab sampling from the river bank was considered as representative of the entire river. This was confirmed by taking samples upstream, near the center of the river, and measuring turbidity. Other sites further upstream were considered for regular sampling but were eliminated because they were less convenient and required permits for access. No significant tributaries enter the river between the sampling site and either of the two prospective damsites, identified in Appendix II of this study. #### EQUIPMENT The mobile laboratory was equipped with a four-paddle stirrer, a Hach Model DREL turbidimeter, a pH meter, and miscellaneous other glassware and equipment for titrating. #### TESTS The testing started on June 11, 1980, and continued into September, covering the entire rock flour, glacial melt period. Temperature, pH, hardness, alkalinity, and turbidity tests were performed at the sampling point. Also, jar testing was used to determine optimum coagulant dosage, effects of rapid and slow mixing, and floc settling rate. These tests were conducted daily until repeatable results to primary variables were established. Testing frequency was then reduced to 3 days per week unless significant changes in weather or stream condition occurred. In addition to on-site testing, samples were collected and transported to an off-site laboratory for particle size analysis and other routine chemical and physical analyses. These tests were performed bimonthly throughout the testing period. Results of the on-site and off-site tests are shown on Table 2-1. Additional Eagle River raw water quality data, obtained between January and June 1981, is contained in Exhibit B at the end of this appendix. Table 2-1 CHEMICAL AND PHYSICAL ANALYSES SUMMER 1980 | • | Dates | | | | | | | | |--|-------------------|---------------------|------------|----------|-----------------|-----------------------------|-----------|---------------------| | | 7-23 | 7-28 | 8-8 | 8-15 | 8-25 | 8-29 | 9-5 | 9-16 | | Ca (mg/l) | 12 | 11 | 12 | 13 | 19 | 19 | 21 | 12 | | Fe (mg/l) | 4.4 | 4.6 | 1.6 | 1.0 | 0.5 | 1.3 | 0.4 | 4.2 | | Mn (mg/l) | 0.07 | 0.08 | 0.04 | < 0.05 | <0.05 | 0.06 | < 0.05 | 0.07 | | Si (mg/l)
SiO ₂ (mg/l) | $\frac{13.2}{28}$ | $\frac{14.4}{30.9}$ | 8.8 | 6.8 | <u>-</u>
5.1 | - 2.7 | 2.8 | $\frac{10.4}{22.3}$ | | Nitrate (mg/l) | 0.26 | < 0.10 | 0.18 | 0.26 | 0.17 | 0.19 | 0.21 | 0.67 | | Sulfate (mg/l) | 8.4 | < 1 | 4.5 | 0.5 | 7.5 | 9.5 | 9.0 | 3.5 | | Total Dissolved Solids (mg/l) | 137 | 79 | 99 | 71 | 92 | 110 | 105 | 85 | | Turbidity (NTU) Suspended Solids (mg/l) | 160
242 | 300
400 | 180
232 | 80
99 | 35
44 | 26
18 | 12
6.4 | 361 | | Hd CACO ₃ (mg/I) | 44 | - | 43 | 55 | 64 | 70 | 78 | 52 | | Alkalinity as CaCO ₃ Bicarb. HCO ₃ (mg/l) Carb. CO ₃ (mg/l) | 52
0 | 60
0 | 51
0 | 97
0 |
110
0 | 84
0 | 88
0 | 55
0 | | Conductivity (umhos) | 100 | 84 | 92 | 96 | 120 | 140 | 165 | 100 | | 'Color (cu) | 10 | 30 | > 70 | 50 | 45 | 35 | 30 | 30 | | Chloride (mg/l) | 2 | 30 | 8 | 5 | 2 | 2 | < 1 | <1 | #### Temperature Figure 2-1 shows a plot of both air and river water temperatures throughout the test period. While air temperatures were generally in the 15-degree- to 20-degree-C range, water temperatures held fairly constant at 6 degrees to 7 degrees C. During the test period there was a general relationship between air and water temperature. This is illustrated by the drop in both air and water temperature between August 29 and September 8. #### Turbidity Turbidity ranged from 30 to 400 NTU, with the normal at about 150 NTU (Figure 2-2). Turbidity in the Eagle River is directly Eagle River Water Temperature 1980 July 15 June 200 TEMPERATURE (°C) Figure 2-1 Air and Water Temperature Figure 2-2 Turbidity linked to air temperature and rate of melt of the glaciers feeding the river. The river appears greyish in color, which is typical of the rock flour solids that create the turbidity. Periodically, samples were analyzed for both dissolved and suspended solids. Occurrence of these solids was plotted against turbidity (Figure 2-3). This plot indicates a rough correlation between turbidity and suspended solids, a turbidity of 75 NTU equaling approximately 100 mg/l of suspended solids. Dissolved solids remain more or less constant regardless of turbidity or suspended solids. Suspended solids particles that cause turbidity were analyzed for size distribution. The six samples analyzed showed that 90 percent of the particles were smaller than 2 microns, and 87 percent were larger than 0.5 micron. The particle count mean averaged 0.86 micron. The data from tests taken during the summer of 1980 closely resemble water quality data gathered by the USGS during the period 1948 to 1973. (The USGS data are included as Exhibit A at the end of this report.) Suspended solids measurements and turbidity generally agree with historic data; however, the previous high suspended solids loadings of 1,200 to 1,400 mg/l were not observed. Our maximum observation was 400 mg/l. Either the high loadings did not occur this year or they were missed, even though a conscious effort was made throughout the summer to take samples when changes in temperature, runoff, and rainfall were observed. #### рΗ The pH of Eagle River water was fairly constant, generally between 7.3 and 7.5. This information is plotted in Figure 2-4. #### Alkalinity and Hardness Alkalinity and hardness vary seasonally and seem to correlate with turbidity. Both alkalinity and hardness decrease during the summer months, which are associated with higher streamflow and turbidity. Alkalinity varies from 50 to 60 mg/l in the winter to 30 to 45 mg/l in the summer. Similarly, hardness varies from 70 to 80 mg/l during the winter to 40 to 50 mg/l in the summer. Both the alkalinity and hardness of the Eagle River water during the sampling period are expressed in milligrams per liter as CaCO in Figure 2-5. #### Jar Testing Jar testing is a bench-scale test that gives insight into full-scale coagulation and settling processes. The primary purpose for jar testing in this task was to determine how different coagulant Figure 2-3 Turbidity vs Dissolved and Suspended Solids Figure 2-4 pH Figure 2-5 Hardness and Alkalinity (alum) dosages reacted with the range of raw water quality during the highly turbid glacial melt period. The effects of changing water temperatures, rapid and slow mixing rates, and rapid and slow mixing durations were then investigated to refine the treatment requirements of the Eagle River water. Initial jar testing showed that two separate alum dosage ranges achieved coagulation and clarification within a broad range of alum dosage. Figure 2-6 shows alum dosage plotted against turbidity after mixing and settling. The plot shows four distinct zones that occur frequently in treating highly turbid river water. When proceeding from left to right the zones can be described as follows: (1) insufficient alum, thus no coagulation, (2) effective alum dosage that achieves coagulation-clarification through destabilization of turbidity particles, (3) another zone of ineffective coagulation, and (4) a second zone of effective coagulation-clarification, this time resulting by adsorption and enmeshment of turbidity particles. Figure 2-6 Coagulation of Water With High Turbidity Plant-scale operation would use Zone 2 rather than Zone 4 because less alum is used and a reduced volume of sludge is produced. Subsequent testing focused on this lower dosage zone to establish how dosage requirements varied with changing river turbidity and temperature. The optimum alum dosage for the summer's test program was between 10 and 15 mg/l. The jar testing results showed that turbidity can be removed effectively through use of coagulation, flocculation, and sedimentation. The settled water produced from these procedures has a turbidity of 10 NTU or less for raw river water temperatures between 3 degrees and 7 degrees C regardless of turbidity. Figure 2-7 shows a typical plot of alum dosage against turbidity after settling. Figure 2-7 Settled Water Turbidity vs Alum Dosage Once the optimum dosage of 10 to 15 mg/l of alum was established, testing then turned to identifying whether an increase in water temperature above the natural river temperature would have a significant effect on coagulation, flocculation, and sedimentation (Figures 2-8, 2-9, and 2-10). In general, settling occurred more rapidly as the water temperature increased; however, the end turbidity was the same. There is a possibility that river water could be preheated as it enters the treatment plant by waste heat energy from a future fossil-fuel-fired electric power plant being considered. Additional testing established, in a general sense, the effect of varying either or both rapid mixing and slow mixing on floc formation and settling characteristics. Rapid mixing performed best with the stirrer set at 90 rpm for 3 to 5 minutes, and the slow mixing appeared to be most effective at 30 rpm for 12 to 15 minutes. Using optimum rapid and slow mixing, the best observed settled water characteristics resulted after 20 to 25 minutes. No attempt was made to correlate the jar stirrer with plant-scale mixing equipment. Because the alum dosage requirement was so low, little subsequent testing was done using polymers as a substitute coagulant or as a coagulant aid. Use of alum as a coagulant has a side effect of lowering the pH of the water, which often increases the corrosiveness of the water to piping systems and household plumbing. Because the decrease of the pH using 10 to 15 mg/l of alum was observed to be small (from 7.5 to 7.2), it may not be necessary to add lime to raise the pH after coagulation to reduce corrosion. Lime systems are typically a nuisance to both operate and maintain. Further investigation of this matter should be conducted during pilot plant testing. Figure 2-8 Settled Water Turbidity vs Alum Dosage at Various Water Temperatures Figure 2-9 Settled Water Turbidity vs Settling Time at Various Water Temperatures Figure 2-10 Settled Water Turbidity vs Temperature and Settling Time #### TREATMENT REQUIREMENTS Treatment goals should achieve or exceed the State of Alaska drinking water regulations and the EPA standards as set forth in the National Interim and Secondary Drinking Water Regulations. Table 3-1 lists several of the more common water quality parameters and shows both EPA Maximum Contaminant Level (MCL) requirements and natural levels of these parameters in the Eagle River. The Eagle River water exceeds MCL requirements in only turbidity, color, iron, and manganese. Table 3-1 WATER QUALITY STANDARDS AND RAW EAGLE RIVER QUALITY | | EPA
(MCL) ^a | Raw Eagle
River | |-------------------------------|---------------------------|--------------------| | Physical Factors | | | | Color (platinum cobalt units) | 15 | 10-70 ^b | | Odor (threshold odor No.) | 3 | - | | Turbidity (NTU) | 1 | 5-400 | | Chemical Factors (mg/l) | | | | Iron | 0.3 | 4.6 | | Manganese | 0.05 | 0.1 | | Chloride | 250 | 0.3-30 | | Sulfate | 250 | 0.5-38 | | Nitrate-N | • | 0.26 | | Fluoride | 2.4 ^C | 0.3 | | Hardness | | 34-134 | | Dissolved Solids | 500 | 41-167 | | рН | 6.5-8.5 | 6.4-8.1 | | THM | 0.10 ^C | (avg. 7.5) | aMaximum contaminant level. ^bRaw water color is influenced by turbidity; raw water samples were not centrifuged or filtered before color was measured. ^CMaximum for annual average maximum daily air temperature 50 degrees F. After it was found in Task 1, Well Drilling Program, that the Eagle River Valley does not contain enough groundwater to fulfill the Anchorage area water needs, the Municipality requested that additional testing of Eagle River surface water be conducted for biological quality and for heavy metal and organic chemical content. The results of these analyses (conducted from January to June 1981) are documented in Exhibit B of this report. These results also indicate an excess of color in Eagle River water. During the eight coldest months when glacial melt ceases, the river is cold (zero to 4 degrees C) with low turbidity (2 to 40 NTU). During the summer, streamflow swells considerably, reflecting glacial melting. In the summer, the river exhibits temperatures ranging from 6 to 8 degrees C and turbidities ranging from 50 to over 400 NTU. The high turbidity caused by glacial flour may seem to present a treatment problem, but highly turbid water actually is more readily treatable. It is cold, low-turbidity water that generally presents the greatest treatment problems. Experience with Ship Creek water at the Municipal Water Treatment Plant indicates that removal of color and turbidity during periods of low raw water turbidity requires special treatment beyond the addition of 10 to 15 mg/l of alum. The
same may be true of Eagle River water. To enhance the coagulation, sedimentation, and filtration processes for effective color and low turbidity removal, lime addition at the headworks or other treatment methods might be required. In general, Eagle River raw water should be an excellent source of potable water but, prior to final design, it is strongly recommended that a full 1-year pilot plant testing program, using at least a 1-mgd plant, be conducted to establish process design criteria. This testing program should address iron, color, and turbidity removal; chemical dosages required over the full range of raw water parameters; filtration rates and media selection; and effectiveness of the recommended treatment processes. #### TREATMENT PROCESSES To satisfy the water treatment requirements most efficiently, the plant will require different operational modes to accommodate summer and winter variations. Figure 3-1 illustrates three possible operational modes: conventional treatment, direct filtration, and in-line filtration. Conventional treatment uses flash-mixing of coagulants, flocculation, sedimentation, and filtration processes. This mode would be applicable during the summer months when the river turbidity is high--over 50 NTU. Direct filtration uses most of the above processes but would bypass the sedimentation basins. In-line filtration would bypass the flocculation and sedimentation basins but would move the coagulant application point closer to the filters. Both direct and Figure 3-1 Treatment Process Options in-line filtration should be applicable for Eagle River water treatment during the fall, winter, and spring months when glacial melt is at a minimum and, therefore, raw water turbidity is less than 50 NTU. The feasibility of using direct and in-line filtration should be confirmed by the pilot testing program. Conventional treatment is compatible with either the direct or in-line process. The transition, seasonally, from one process to the other would be easy. Bypass channels or piping is all that is needed to achieve operational flexibility. As might be expected, operational cost for either direct or in-line filtration will be substantially lower than for conventional treatment because of lower chemical dosages, reduced sludge production, and less equipment maintenance. #### TREATMENT PLANT Figure 3-2 shows a typical filtration plant flow schematic, and Figure 3-3 shows a preliminary layout for a 70-million-gallon-a-day plant. The plant could be constructed in increments with basins and filters added when needed with little disruption to continuing operation of existing facilities. From the layout, it can be seen that a 7-acre site will be required. Although plant site selection is beyond the scope of this task, desirable sites would be those that provide easy access during all weather conditions, minimize pumping requirements through careful site selection at the proper elevation, and eliminate the need for either raw or finished water pumping. Elimination of raw water pumping is more desirable, providing construction cost savings and reduced equipment wear. Finished water pumping can facilitate customer service along the transmission pipeline. #### Headworks The headworks contains facilities for application and mixing of chemicals plus a metering device to measure raw water flow into the plant. Chemicals can be mixed by using either an "in-channel rapid mixer" or a metering device such as a Parshall flume, #### Flocculation Floc nuclei (aluminum hydroxide) resulting from coagulation join together through numerous contacts and envelop suspended particles in the process. Upon sufficient mixing, the floc grows to a size and density that settle readily. It is important in both the flash-mixing and flocculation zones that equipment be furnished with variable-speed drives to allow variation in energy inputs. Because optimum mixing requirements vary from season to season, chemicals may be wasted if proper adjustments cannot be made. Figure 3-2 Typical Plant Flow Schematic Figure 3-3 Preliminary Plant Layout #### Sedimentation Dense floc particles, including suspended solids, settle out in the sedimentation area leaving comparatively clear water containing a minimum of floc. Because of the heavy rock flour load, the sedimentation basins should be equipped with mechanical sludge removal equipment. It is anticipated that between 50 and 150 tons of dry solids sludge will be produced daily during the summer. #### Filtration System The settled water from the sedimentation area, containing a small amount of unsettled floc, proceeds to the filters. The filters remove the remaining floc. Granular media filters consist of either two or three layers, each exhibiting a different size and specific The largest grain media having the lowest specific gravity is located at the top of the filter with progressively smaller and heavier sizes toward the bottom. This arrangement permits floc and sediment particles to be removed throughout the entire filter rather than mostly at the surface as typically occurs in single-grain-media filters. The addition of polymer as a filter aid immediately ahead of filtration improves floc removal within a filter, even at higher filtration rates. A nominal filtration rate of 6 gallons per minute per square foot is suggested for an Eagle River filtration plant. Pilot filter testing is needed to (1) verify the design filter rates, both summer and winter; (2) select filtering media specifically for local conditions; and (3) identify which chemicals are needed to aid filtration and in what quantity. #### Wastewater Disposal Sludge containing rock flour and sediment from the river is produced in two locations in the plant: the sedimentation basin underflow and the filter backwash water. At a plant flow rate of 70 mgd and a raw water turbidity of 150 NTU, the quantity of sludge produced would equal 55 tons per day of dry solids, which would equal approximately 730 cubic feet per day of solids. Removal of solids from sludge for ultimate disposal is often the most complex problem to be solved in the design of a water treatment plant. Generally, there are two means for dewatering sludge solids, either by natural means such as evaporation, percolation, and freezing or by mechanical means using such devices as vaccum filters, filter presses, and centrifuges. The cost for mechanical dewatering is usually three to ten times the cost for natural drying. Natural drying in drying beds or lagoons is the practical choice where climatic conditions permit drying to the degree that the sludge exhibits the characteristics of a solid that can be readily loaded for landfill disposal. Usually two or more beds or lagoons are provided to permit use of one while the other is drying. More thorough evaluation of the local climatic and geologic conditions is required before a decision can be made regarding sludge disposal. #### Disinfection With the addition of disinfection, the water leaving the filters is of potable quality and ready for transmission and distribution to the public. Although chlorine has been the universal disinfectant in public water works, further consideration should be given to the use of other disinfectants for preliminary disinfecting while continued use of chlorine or hypochlorite will likely remain the choice for post disinfection as the water enters the transmission and distribution systems. Further investigation is required prior to selecting disinfectants and their application points within the plant. Trihalomethane formation potential needs to be determined upon selection of Eagle River surface water as supply source. #### ALTERNATIVE TREATMENT METHODS Alternative treatment methods were considered, some of which were reported by others in previous studies. These methods include hydroclone separators, screening with microstrainers, and precoat filters. Only precoat filtration is applicable for the Eagle River conditions and could be considered an alternative to granular media filtration. Historically, granular media filtration is the choice for public water supplies, especially installations over 5 mgd. The disadvantage of precoat filtration is the possibility of loss of the precoat from the filtering septum, allowing raw water to short circuit through the filter. Loss of precoat can be caused by hydraulic surges, changing flow rate, power failure, and operator error. Granular media filters are subject to operator error only. Further consideration of the precoat filtration is not considered worthwhile. #### Chapter 4 COST ESTIMATE Table 4-1 shows the total project costs for a 70-mgd plant as well as a 23.33-mgd plant, which provides for ultimate plant development in three equal increments. Table 4-1 ESTIMATED PROJECT COSTS^a | | Plant | Capacity | |---|--|--| | | 23-1/3 mgd | 70 mgd | | Capital
Construction
(Anchorage) | \$10,900,000 | \$26,000,000 | | Contingency, Bonds and Insurance, and Technical, Adm., and Legal Services (Anchorage) | 6,459,000 | 15,400,000 | | TOTAL Capital Costs ^b | \$17,359,000 | \$41,400,000 | | Annual O&M Labor Chemicals Power Maintenance Materials Miscellaneous | 443,000
335,000
193,000
98,000
6,000 | 895,000
1,006,000
580,000
212,000
17,000 | | TOTAL Annual O&M Costs | \$ 1,075,000 | \$ 2,710,000 | ^aIn January 1981 dollars. The estimated construction costs and operation and maintenance costs are based on actual experience for plants constructed and operated in the Pacific Northwest and have been adjusted to reflect costs for Alaska. They are also based on the EPA Estimating Water Treatment Costs, Volumes 1 and 2, and on the MAUS, Volume 2. These estimates are considered as order of-magnitude estimates with a -30 to +50 percent reliability range.
Construction costs reflect the use of reinforced concrete construction with all basins and filters being enclosed. The estimates bLand costs are not included. include finished water pumping (without standby power) but exclude both raw water and finished water transmission piping and raw water pumping. Construction costs are in January 1981 dollars using an Engineering News Record Construction Cost Index of 347. Although land costs are not included in the estimates, the site requirements are 7 acres for the plant and 23 acres for the lagoons—a total of 30 acres. #### Chapter 5 BIBLIOGRAPHY - U.S. Army Corps of Engineers, Alaska District, in conjunction with the Municipality of Anchorage. Metropolitan Anchorage Urban Study, Volume 2, Water Supply. 1979. - U.S. Environmental Protection Agency. Estimating Water Treatment Costs, Volume 1, Summary. EPA-600/2-79-162A. Municipal Environmental Research Laboratory, Office of Research and Development. Prepared by Culp/Wesner/Culp Consulting Engineers, Santa Ana, California. August 1979. Cost Curves Applicable to 200 MGD Treatment Plants. EPA-600/2-79-162B. Municipal Environmental Research Laboratory, Office of Research and Development. Prepared by Culp/Wesner/Culp Consulting Engineers, Santa Ana, California. August 1979. Exhibit A USGS Water Quality Data UNITED STATES DEPARTMENT OF INTERIOR - SEOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | 3.1 | ; | .27 | •23 | • 16 | .27 | .27 | • 25 | •23 | • 32 | .16 | •14 | •29 | .11 | .07 | .27 | .38 | .27 | • 66 | • 05 | |---|-------|--------------|--------|-----|--------|------|------|--------|------|------|------|------|-----|-----|------|------------|-----|------|------|------| | CAR-BUNATE (MG/L AS CO3) | • | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | BICAR-
BONATE
(MG/L
AS
HC03) | 82 | 66 | S
8 | 19 | 53 | 101 | 100 | 93 | 100 | 74 | 3 7 | 8 7 | 98 | 47 | 67 | 9 * | 16 | 108 | 46 | 38 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | 67 | 81 | 4 | 52 | 43 | 83 | 82 | 76 | 82 | 61 | 36 | 39 | 7.1 | 39 | 52 | 69 | 80 | 68 | 7.7 | 31 | | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2) | 11 | ; | 19 | 3.4 | 8
• | 16 | 5.1 | 5.9 | 5.1 | 7.5 | 11 | 6.1 | 4.4 | 1.9 | 2.7 | 3.4 | 6.2 | 6.9 | 7.5 | 54 | | PH
(UNITS) | 11 | : | 6.7 | 7.5 | 7.0 | 7.0 | 7.5 | 7.4 | 7.5 | 7.2 | 6.8 | 7.1 | 7.5 | 7.6 | 7.6 | 7.6 | 7.4 | 7.4 | 7.3 | 4.0 | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | 174 | 198 | 133 | 146 | 113 | 209 | 211 | 194 | 203 | 152 | 92 | 96 | 190 | 107 | 166 | 192 | 187 | 228 | 207 | 16 | | COLOR
(PLAT-
INUM-
COBALT
UNITS) | :: | : | ! | 10 | ហ | ທ | ហ | ស | ĸ | ហ | ស | rv. | 10 | ហ | S | ທ | 0 | 0 | 0 | 20 | | SURFACE
AREA (
150 MI)
(00049) | 192 | • | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | | TEMPER-
ATURE
(DEG C)
(00010) | :: | 1.5 | 0.6 | : | 9.5 | • | î. | 1.0 | 7.0 | 10.0 | 0.6 | 10.0 | • | ; | 1.5 | 3.0 | ស្ | ; | 9.5 | : | | H
H
E | 948 | 1949
1620 | 1820 | ; | | 1000 | 0060 | 1200 | 1300 | 1600 | 1430 | 1800 | 1 | | 1055 | 1030 | | 1500 | 1700 | 1800 | | DĂTE | • : : | APR . 10 | :- | | • | • | 12 | ((C) | | 12. | 14. | | | • | • | 05. | | • | Z.3. | 16 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | CHLO-
RIDE.
DIS-
SOLVED
(MG/L
AS CL) | 2.0 | : | 3.0 | ů. | 1.2 | 1,5 | 1.2 | 6.4 | 2.5 | 2.5 | 2.5 | 1.0 | 80 | 1.8 | . | n. | 1.0 | 2.0 | 2.5 | 1.0 | 1.5 | |--|------------|----|-----|---|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|-----|-----------| | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ; | ; | 1 | : | : | : | : | 1 | : | 1 | ļ | : | i | 1.0 | 1.4 | 4. | | 5• | • | 4 | 9. | | SODIUM+
POTAS-
SIUM
DIS-
SOLVED
(MG/L
AS NA) | 3.2 | ! | ; | 2•3 | 2.7 | 3.5 | 8.3 | 4.1 | 2.3 | 0.4 | 4.7 | 2.2 | 3.1 | ł | ; | i | : | : | : | i | : | | PERCENT
SODIUM
(00932) | ; | ; | ! | ; | ; | ; | ; | ; | ; | 1 | 1 | ; | : | 7 | 13 | Ŋ | 7 | ~ | 9 | ហ | 4 | | SODIUM
AD-
SORP-
TION
RATIO | ! | i | i | i | ; | : | : | ł | : | 1 | ł | ; | : | •- | 2. | - | • 1 | ~ | | -: | .1 | | SODIUM.
DIS-
SOLVED
(MG/L
AS NA) | 1 | : | ; | • | 1 | ; | : | ; | ; | ; | ; | 1 | : | 3.0 | 3.5 | 1.9 | 5.9 | 3,2 | 3.6 | 5.6 | σ. | | MAGNE-
SIUM•
DIS-
SOLVED
(MG/L
AS MG) | 4. | : | 1 | 3.4 | 3.5 | 5.6 | S.5 | 5.1 | 5.1 | 6.1 | 4.3 | 2.6 | 3.0 | 5.1 | 1.5 | 5.1 | 4.8 | 6.3 | 8.4 | 5.7 | 2.9 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | 27 | : | ; | 50 | 21 | 17 | 33 | 33 | 30 | 32 | 23 | 14 | 15 | 28 | 17 | 54 | 28 | 56 | 32 | 31 | 13 | | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | 18 | - | : | 16 | 12 | 10 | 25 | 54 | 20 | 23 | 14 | 10 | 11 | 20 | 10 | 56 | 21 | 11 | 25 | 54 | 13 | | HARD-
NESS
(MG/L
AS
CACO3) | 96 | ŀ | : | 99 | 19 | 53 | 105 | 106 | 96 | 105 | 75 | 46 | 20 | 16 | 64 | 6 | 06 | 16 | 114 | 101 | 77 | | HA
NE
(ME
(A)
(A) | OCT , 1948 | 19 | | 200 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | • | 200 | 21 | 12 | 16. | E 0 | 12. | 14. | 22 | | 04 | | 000 | 10 | • | | Joe
16 | UNITED STATES DEPARTMENT OF INTERIOM - GFOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | _ | |--------| | ⋖ | | - | | • | | _ | | 0 | | | | | | > | | | | | | | | _ | | - 1 | | _ | | AL | | 9 | | _ | | \sim | | _ | | | | \sim | | ч. | | TER | | _ | | _ | | A | | _ | | ELEV. OF LAND SURFACE DATUM (FT. ABBOVE | (72000) | 250.00 | : | : | 250.00 | 0000 | 00.002 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250,00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | |--|---------|--------|-----|-----------|------------|------|----------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------| | IRON
(UG/L
AS FE) | (71885) | ; | : | i | i | 76 | 0 | 30 | 40 | 04 | 140 | 140 | 30 | 130 | 240 | 0 | 0 | 40 | 20 | 0 | 0 | 20 | 100 | | MANGA-
NESE
(UG/L
AS MN) | (71883) | ; | : | 1 | ; | | ; | • | : | ; | : | ; | : | ; | ; | 10 | 0 | 0 | 0 | 0 | 0 | 10 | ; | | NITRO-GEN•
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | (71851) | - | | ; | 2. | | 0 • 1 | .70 | 1.2 | 1.2 | 1.1 | 1.0 | 1.4 | .70 | •60 | 1.3 | .50 | •30 | 1.2 | 1.7 | 1.2 | 5.9 | .20 | | SOLIDS.
DIS-
SOLVED
(TONS
PER
AC-FT) | (70303) | 41. | | ; | ~~ | | 11. | 60. | .18 | .18 | .16 | .17 | .13 | 90. | 60. | .15 | 60. | .13 | .15 | .16 | .19 | .16 | .07 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED | (70301) | 501 |) I | ; | 61 | | 86 | 89 | 142 | 129 | 112 | 128 | 4 | 58 | 9 | 110 | 9 | 96 | 111 | 114 | 137 | 120 | 53 | | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | (70300) | i | • | ; | ; | | 1 | ; | 129 | 130 | 118 | ; | ; | ; | i | i | 1 | 1 | ! | i | ; | ! | : | | SILICA,
DIS=
SOLVED
(MG/L
AS
SIO2) | (00955) | 0,6 | ; ; | ! | 6.4 | . i | • | 3.0 | 4.9 | 7.1 | 6.3 | 9.9 | 5.2 | 3.4 | 4.1 | 5.0 | 2.6 | 3.2 | 7.2 | 0.6 | 8 • 9 | 7.7 | 2.3 | | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | (05600) | | : : | ; | 1 | | E. | ; | •1 | 0. | •1 | .1 | • 1 | 0. | i | 0, | 0. | • | 0. | | 0. | | 0. | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | (00945) | 976 | u | 546
54 | <u> </u> | 951 | * | 13 | 36 | 54 | 19 | 56 | 19 | 12 | 15 | 956
22 | 15 | 28 | 54 | 17 | 27 | 92 | 13 | | C
4
A
A | 1 | - | : : | - : | JUN
245 | - | NUC | : | : | 12. | ¥ 9 7 | 08. | 12. | 14. | : | -: | 2040. | 020 | 050 | 1000 | 23. | 7AY | 16 | 5 UNITED STATES DEPARTMENT OF INTERIOR - SFOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | BICAR-
BONATE
(MG/L
AS
HCO3)
(00440) | 32 | i | 104 | ; | 114 | 90 | : | 68 | 04 | 1 | • | • | } } | 1 | İ | # #
1 | : : | : | • | : | : | • | :
 | | ; | ; ; | \$
8 | ! | |---|--------------|------|------|------|----------------|------------|------|------|------|-------|------------|------------|--|------|------|------------|----------|------|------|------|------|------|---------|------------|------|------|------------------|----------| | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | 26 | : | 85 | ; | 0 I | 4 6 | : | 92. | | | : | 9 (| ; ; | 1 | ; | 1 1 | : | 1 | ; | • | ! | • • | 1 1 | | : | 1 1 | 9 (| l
B | | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2) | 91 | • | 5.6 | : | 0 • 1
1 • 8 | 3.6 | ; | 2.2 | 9:1 | | ; | | 1 1 | 1 | ! | : : | 1 | 1 | ; | 1 | • | • | • | 1 | ; | | 1 | !
• | | PH
(UNITS)
(00400) | 6.5 | : | 7.8 | : | 7.5 | 7.6 | • | 7.7 | 9.2 | | : : | • • | ; ; | ; | .; | : 1 | 1 | ! | i | ! | ! | : | • | 1 | ; | ; | • 1 |)
 | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | 76 | | 243 | 222 | 286
286 | 197 | 151 | 151 | 400 | 1 4 | 87 | 0 (| ა ტ
ი | 95 | 95 | 10 C | 9 A | 83 | 83 | S. | 11 | -; | | ~ !
- i | 7 | ± ; | 77 | 1 / | | COLOR
(PLAT—
INUM—
COBALT
UNITS) | 30 | : | 'n | • | ហ៖ | ហេវេ | • | R | ហ | | 1 | ! | 1 1 | ; | 1 | 1 1 | 1 | 1 | 1 | ! | ; | • | ! | ; | ! | • | : | <u>!</u> | | STREAM-
FLOW.
INSTAN-
TANEOUS
(CFS) | i | 1160 | : | 95 | 0 U
4 4 | 155
193 | 747 | 742 | 1650 | , | : : | 1 | ! | 1 | • | ; | : | ł | ; | i | : | : | ! | 1 | • | : | ; | ! | | CHARGE. IN CUBIC FEET PER SECOND (00060) | ł | ; | : |
1 | 11 | ;; | : | | 1 1 | 1 000 | 2140 | 1500 | 1450 | 1580 | 1470 | 1410 | 1860 | 2180 | 2130 | 2410 | 2580 | 1790 | 2980 | 2830 | 2310 | 0912 | 0052 | 0102 | | SURFACE
AREA
(SO MI)
(00049) | 192 | : | : | : | :: | 192 | ; | : | 192 | 1 | : ; | • | ! | ; | | • | | 1 | ; | ; | 1 | 1 | : | ; | • | ; | 1 | 1 | | TEMPER-
ATURE
(05G C) | 9.0 | 0.9 | S. | 0. | 00 | 4 6
0 8 | | | | • | 7.0 | • | 0 0 | | • | œ - | | 2 | : | 2 | • | • | ė « | • | ٠ | • | • | • | | T 1ME | 1958
1145 | 1300 | 1200 | 1200 | 1130 | 1100 | 1045 | 1115 | 1340 | 1400 | 1730 | 74 | 1730 | 80 | 74 | 7 7 | . E | 73 | 80 | 80 | 73 | 2.0 | 2 6 | 80 | 80 | . 3 | e c | r
r | | DATE | • • | 13. | 500 | 9.0 | | | • | | | _ | 30. | : | 0 C | | 0 A | • | | | 13 | 14 | 15. | | | • | 22. | | ٠ | 5.00 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | 3.0 | : | 1.4 | : | ======================================= | 1.4 | • | 44 | : : | : | : | ! | : : | • | ; | 1 | ! ! | 1 | ; | • | 1 1 | ; | 1 | : | : | : | : | |---|------------|-----|-----|---|---|----------------|-------|-------|-----|----|-----------|----|-------|------------|-----|-----|--|----|----|----|------------|------------|------------|-----|-----|----|--------| | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS.K) | 1.2 | : | e. | : | ω <u>;</u> | ທຸຕຸ | 1 | | : ; | • | ! | ! | : 1 | • | ; | : | : : | ; | • | 1 | : 1 | | : | ! | 1 | • | ; | | PERCENT
SOBLUM
(00932) | ហ | ; | Ŋ | : | ν i | 7 | • | 100 1 | - ; | : | : | • | : : | 1 | : | ; | : : | ; | ; | : | ; ; | 1 | ; | 1 | • | 1 | i
i | | SODIUM
AD-
SORP-
TION
RATIO | • 1 | ; | | ł | 1:1 | - 2 | ; | | : : | 1 | ; | ! | ! ! | : | ; | ; | : ; | ; | ; | : | | : : | ! | ; | 1 | ; | 1 | | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | 6 0 | ł | 2.7 | : | 3.1 | 3.6
8.8 | | 2.7 | 1 | : | ; | ; | 1 1 | : : | 1 | ! | ! ! | 1 | 1 | ! | 6 I | : : | : | ; | ! | ! | : | | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | 5.4 | ; | 4. | ; | 5.2 | 3.4 | ; | (M) | • 1 | • | • | • | ! ; | : | ; | ; | ! | ; | ! | 1 | : : | : ; | : | • | ! | ; | } | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | 6.6 | : | 36 | ; | 45 | 32 | ; | 19 | | : | ! | ! | • (| ; ; | 1 | ; | 1 1 | ; | 1 | ! | | 1 1 | 1 1 | i | ; | ; | 1 | | HARD-
NESS.
NONCAR-
BONATE
(MG/L
CACO3) | œ | ! | 23 | • | 91 | 17 | | | - 1 | ! | ļ | ; | ! ! | : : | 1 | : | : ; | : | : | ! | 1 (
1 (| i ; | : : | : | ; | : | ; | | HARD-
NESS
(MG/L
AS
CACO3) | 9.
4 | : | 108 | : | 134 | 56
40
90 | . ! | 1 6 | ; ; | ! | • | ; | | 1 1 | 1 | 1 | 1 1 | ; | • | 1 | 1 | | : : | . ; | ; | ; | ; | | NITRO-
GEX.
NITRATE
DIS-
SOLVED
(MG/L
AS N) | • 05 | i | .18 | : | •25 | .23 | | 70. | 51 | 1 | • | ; | * 1 | 1 | ; | ; | ! ; | ! | ! | ! | • | | : : | ; | 1 | ! | • | | CAR-
BONATE
(MG/L
AS CO3) | 958 0 | 996 | 0 | ; | 0 | c 0 | • • | 00 | | 1 | : | ; | • (| : | ; | 1 | ; ; | ļ | • | • | ! ! | 1 | : : | : | ; | ; | : | | DATE | AUG . 1 | 13. | 26. | • | • • | ₩
7 4 0 | NON W | | 29. | 59 | 30
JUL | 01 | 0.4.0 | 90 | 0.8 | 09. | | 12 | 13 | 14 | 15. | 200 | 200 | 22 | 23. | 24 | 25 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE P AT EAGLE RIVER AK | SED.
SUSP.
FALC
DIAM.
FINER
THAN
(70341) | ; | 69 | ; | : | ł | ; | ; | | ; | ; | : | • | : | : | ; | : | : | • | | } | ; | ; | ; | į | 1 | ! | İ | i | İ | : | ; | ; | |---|---------------|------|---|---|------------|----|------|------|-----|-----|-------|-----|-----|------------|----|----|---|-----|----------|----------|-----|---|---|----|----|----|----|----|----|----|----|----------| | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(70340) | ; | 62 | 1 | : | : | : | 1 | • | 1 | ; | : | : | : | • | • | ; | • | : | • • | ; ; | | : | ; | : | ; | ; | : | : | • | • | • | ! | | SED.
SUSP.
FALL
DIAM.
& FINER.
THAN
(70339) | ; | 52 | ; | : | ; | ; | : | : | 1 | : | ; | ! | : | ; | ; | ! | ! | ; | • | } | : : | ; | ; | ; | ; | ; | ! | : | ; | 1 | : | ; | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(70338) | ; | 04 | i | : | : | : | ; | : | ; | ; | 1 | : | : | : | : | i | : | : | : | | : | 1 | ; | : | i | i | : | ; | ; | ! | ! | ļ | | SED.
SUSP.
FALL
DIAM.
& FINER
THAN
(70337) | ; | 30 | ! | 1 | ; | ; | : | ! | ! | ! | ; | 1 | : | • | ; | ! | 1 | 1 | ! | • ! | ! ! | | ! | : | ŀ | ! | : | ! | ! | 1 | 1 | 1 | | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | 90• | : | .17 | : | .23 | : | •16 | •17 | ţ | .11 | • 0 7 | • | ; | : | ; | : | : | : | ! | | : 1 | 1 | ; | • | ; | : | ; | ; | ; | : | : | ! | | SOLIDS.
DIS-
SOLVED
(70NS
PER
DAY) | ŀ | ; | 1 | ; | 24.3 | : | 49.0 | 63,6 | : | 160 | 4 | ; | : | : | ; | 1 | ; | : | : | • | ; ; | : | ; | ; | ; | ! | 3 | : | : | ; | 1 | ! | | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | 4
Ծ | : | 127 | : | 167 | ! | 117 | 122 | : | 80 | 54 | ! | : | : | ; | ! | : | 1 | • | | : | : | • | ; | ; | ; | 1 | 1 | ; | ! | ; | ŀ | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | 2.0 | 1 | 5.9 | ; | 7.2 | ; | 4.4 | 4.5 | 1 | 3.5 | 3.2 | : | 1 | 1 | ; | 1 | : | ; | ! | • • | ; ; | 1 | ; | ; | ; | 1 | • | ! | 1 | ; | 1 | • | | FLUO-
RIDE+
DIS+
SOLVED
(MG/L
AS F) | 0. | ; | •1 | : | 0. | : | e, | 4. | ! | ۰. | • | : | : | • | 1 | ; | ! | : | • | : | : : | | ; | ; | ; | : | ; | ! | 1 | ; | ; | 1 | | SULFATE
D1S-
SOLVED
(MG/L
AS SO4) | 1958 | 9961 | 54 | : | 1967
31 | : | 92 | 52 | : | 16 | 15 | ; | ; | : | ł | 1 | ! | ! | 1 1 | 1 1 | | : | : | ; | ŀ | : | ! | ; | ! | ! | ; | ! | | DATE | • | . : | 200
200
200
200
200
200
200
200
200
20 | • | 20 | 20 | 04 | 12 | 050 | 05 | 29 | 29. | 29. | 30.
JUL | 01 | 04 | n | 0.6 | | , | | | | 14 | 15 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | Α¥ | | |------------|--| | KIVER | | | EAGLE | | | RATE | | | EAGLE | | | | | | 15277100 - | | | | | | | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED | (7/04Y)
(80155) | ; | 1 | 966 | ; | 3.7 | • | • | 27 | 7.7 | 353 | : | : | 949 | 1380 | 3080 | 919 | 565 | 360 | 905 | 23% | 379 | 964 | 945 | 857 | 1540 | 1000 | 0000 | 3000 | 1770 | 818 | 1810 | 1980 | |--------------------|--|--------------------|------------|-------------|-----|-----------|------|-----|-------------|--------|-----------|-----|------|--------|------------|------|------|-----|-----|-----|-----|----------|-----|-----|-----|-----|------|--------|------|------------|------|-----|------|------| | | SEDI.
MENT.
SUS.
PENDED | (MG/L)
(80154) | ţ | | 318 | • | 16 | | £. | 05 | 93 | 176 | • | : | 145 | 252 | 532 | 152 | 132 | 92 | 212 | ט ע
ר | n m | 192 | 160 | 149 | 236 | 152 | 717 | 0021 | 0 00 | 139 | 292 | 292 | | | ELEV.
OF LAND
SURFACE
DATUM
(FT. | | 250.00 |)
)
! | ; | 1 | ; | 1 | ; | 250.00 | ; | ; | ; | 250,00 | 1 | ! | : | ; | • | • | ; | ; | 1 | ; | i | : | ; | ; | ; | 1 1 | : | ; | 1 | ; | | | IRON
(UG/L | AS FE)
(71885) | 00 | ì | : | 04 | : | 320 | ! | 1300 | 400 | 1 | 1150 | 2300 | 1 | ! | : | : | : | ! | ! | | 1 1 | i | ; | : | ľ | ł | 1 | 1 1 | 1 | ł | 1 | 1 | | | MANGA-
NESE
(UG/L | AS MN)
(71883) | ~ | | : | ! | i | : | i | : | : | ! | : | : | i | ! | ł | 1 | 1 | • | 1 | 1 | | • | • | ! | ! | 1 | | • | ; ; | 1 | ! | ; | | ITY DATA | NITRO-
GEN.
NITRATE
DIS-
SOLVED
(MG/L | AS NO3) | 00. | 1 | : | •80 | • | 1.1 | : | 1.0 | 1.1 | : | 06. | | ; ; | : | ; | ; | 1 | ŀ | ! | • | : : | ; | 1 | 1 | î | i
t | ł | 1 1 | 1 1 | 1 | 1 | ! | | WATER QUALITY DATA | 8 € | 1.00 MM
(70346) | : | | 100 | ! | ! | : | : | ! | : | 100 | | ; ; | : | : | : | ! | ; | : | ! | ! | ! ! | | ; | • | : | : | ! | • | ! ! | • | 1 | ; | | 3 | SED.
SUSP.
FINER
THAN | .500 MM
(70345) | i | | 66 | : | ; | ; | • | ! | • | 0 | : ; | i | 100 | : | ; | 1 | ; | i | 1 | ! | 1 1 | ; | ; | 1 | 1 | ; | ! | f | 1 1 | + | ; | ; | | | SED.
SUSP.
FALL
DIAM.
FINER | .250 MM
(70344) | ; | ı
İ | 76 | ; | ! | 1 | : | ; | • | ď | | : : | 91 | ; | ; | ; | 1 | 1 | 1 | ; | 1 1 | | ; | • | : | 1 | : | i i | • • | 1 | 1 | 1 | | | SEO.
SUSP.
PALL
FINER.
THAN | .125 MM
(70343) | : | | 48 | ; | ł | ; | ! . | ; | • | 7.7 | : : | i | 76 | 1 | : | į | 1 | ; | 1 | , | : : | ; | ; | ; | • | ! | ; | \$
1 | : : | 1 | ; | ; | | | SED.
SUSP.
FILL
TINER | .062 MM
(70342) | 958 | 996 | 75 | ; | 1967 | : | : | • | : | ď | 2 1 | i | 69 | • | • | : | ; | ; | ; | ; | : : | ; | ; | 1 | ; | †
1 | ; | : | : : | : : | ; | ; | | | | DATE | ~ , | | 13 | 26
10V | • ~ | • | 20.
18 Y | 04 | 12 | 2 Z | 100 | 0 | 29. | 62 | 30 | 01. | 04. | 05 | 06 | | | | 12. | 13 | 14 | 15 | 19. | 20 | | 700 | 24 | 25 | UNITED STATES DEPARTMENT OF INTERIOR - GFOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | BICAR-
BONATE
(MG/L
AS
HC03) | : | ; | ; | ; | : : | ; | | | 1 1 | : | • | • | ; | ; | : | : | : | : | : | ; | ď | : | : : | | • | 80 | : | | 25 | 30 | ; | ; | : | |---|------|------------|-----|------|------|--------|------|-----|--------|------|------|------|------|------|------|------|------|------|------|------|-----|----------|-----|----------|-----
-----|------------|---|------|------|------|-----|----------| | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | ! | : | ; | • | • | : | (| | 1 | ; | ; | ; | ì | ; | : | : | : | : | • | ! | 9. |) (| 1 1 | | ; | ď | : 1 | | £4 | 52 | 1 | : | ; | | CARBON
DIOXIDE
DIS-
SULVED
(MG/L
AS CO2) | : | ; | : | • | • | ; | 1 | ; | 1 1 | • | ; | ; | ; | ŀ | : | : | ; | : | ; | : | 4 | | 1 1 | i | • | 0.4 | 1 | | 2.1 | 1.5 | ; | : | ţ | | PH
(UNITS) | ì | ; | , | | 1 | 1 | ! | 1 | } | | : | : | ; | ; | : | : | 1 | : | 1 | : | | 7 . | 1 1 | 1 | ! | 7.4 | : : | | 7.6 | 7.5 | ļ | : | 1 | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | 12 | • Q | - | - a | 77 | 14 | 1. | - 0 | 0 0 | G (C | 2.5 | | 69 | 69 | 77 | 90 | 7.1 | 7.1 | 40 | 87 | ۲ | 101 | 101 | 7 | ; | 100 |) †
 | | 113 | 74 | 175 | 225 | 233 | | COLOR
(PLAT-
INUM-
COBALT
UNITS) | : | 1 | . ! | | | ; | į | | 1 1 | | • | ; | ; | : | • | • | ! | ! | ! | 1 | , | 01 | | 1 | : | c |) <u> </u> | | ហ | S | ; | ; | 1 | | FLOW.
INSTAN-
TANEOUS
(CFS) | • | i 1 | ; ; | } | 1 1 | 1 | | | • | : : | : : | | ļ | ; | 1 | : | ļ | • | 3110 | ł | 000 | 0.00 | 000 | 11261 | 777 | 0 | , 0 | ì | 1520 | 1650 | 194 | 100 | ያ | | CHARGE. IN CUBIC FEET PER SECOND | 0480 | 1930 | 000 | 1860 | 1900 | 2000 | 2770 | - 6 | 0000 | 2170 | 2410 | 2370 | 2910 | 2970 | 2280 | 1950 | 3150 | 3020 | ! | 1360 | 1 | | | i | • | i | ; | | : | ł | ; | 1 | 1 | | SURFACE
AREA
(SQ MI)
(00049) | , | : ! | 1 1 | 1 1 | 1 | 1 | | 1 | ! | 1 | | ; | ; | ; | : | 1 | ! | ! | • | ; | | 1 | 1 | ! | ! | 1 | | | 192 | 192 | 1 | 1 | 1 | | TEMPER-
ATURE
(DEG C)
(On10) | | | • | | | ທ
ໝ | | • | • | • | à | | 7.0 | | | | | • | • | • | . ! | 1 U | • | | 2.0 | 0.4 | 4 | | 8.0 | 7.0 | 4.0 | 0• | 0• | | 3
1
1 | ~ |) r | . a | 2 | 2 | 1830 | 2 | | ָ
ק | 7 | 2 | ď | 1900 | 0 | 0 | 0 | m | 3 | 0 | 80 | | i c | | 2 | | 0 | 1100 | • | 1500 | 1300 | 1400 | | 1100 | | DATE | _ | | • | • | 30 | | | • | • | 96 | | | | | 60 | 11 | 14 | 15 | 17 | 22. | | ٠ | • | 00T | : | | 90 | • | 03 | 13 | 03 | 27 | MAR . 10 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE P AT EAGLE RIVER AK | ٠ | | | | | | | | | | | | |--|------|----|---------------------------------------|------------|-----|-----|-----|----|----|----|-----|------|------------|------------|-----|-----|-----|--------|------------|-----|----|-----------|------|----------|-----|-----|------------|-----------|----|---|--------| | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | : | 1 | ! ! | 1 | : | ! | 1 | 1 | : | : | ! | ; † | 3 !
6 1 | ; !
; i | ; ; | 1 1 | ł | : | ; | | ; | <u> </u> | : | 1.8 | : | • | o. | œ, | : | : | ; | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ł | 1 | • • | : | ; | 1 | • | ; | : | ; | 1 | ! ! | • | • 1 | | 1 | : | 1 | : | 1.4 | ; | 1 | 1 | 4. | - | (| | 9. | 1 | ; | ; | | PERCENT
SODIUM
(00932) | : | 1 | • ! | ! ! | ; | ; | ; | ! | ! | ! | ! | ! | 9 1 | | . ! | ! | 1 | i
* | 1 | vo | ! | ! | ; | 7 | į | r | • | ις | ! | ; | ! | | SUBTUM
AD-
SORP-
TION
RATIO
(00931) | i | 1 | • | 1 | : | 1 | 1 | ł | ŀ | ł | 1 | : | : | • | : | } | ! | ! | : | - | 1 | : | i | 2. | : | • | . | • 1 | 1 | : | : | | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | : | • | | : : | ì | ; | : | 1 | ; | 1 | ; | ! | ļ | ! | ! | ! | 1 | ! | ; | 1.6 | ; | ; | ; | 8,6 | 1 | 1 | 1.1 | o. | ; | • | 1 | | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | ; | : | 1 (| | ; | ; | ; | ; | ! | 1 | } | ; | 1 | 1 | ! | : | ! | ! | ; | 3.5 | 1 | ; | : | χ,
γ, | 1 | | 5.6 | 1.7 | ; | ; | 1 | | CALCIUM
OIS-
SOLVED
(MG/L
AS CA) | ! | 1 | ! | : : | ł | : | : | 1 | } | ; | 1 | ł | ! | 1 | ! | | ţ | ; | ; | 17 | : | : | ! | 80 | 1 | | 9 | 11 | 1 | ł | ł | | HARD-
NESS.
NONCAR-
BONATE
(MG/L
CACO3) | ; | : | [(| : ; | 1 | : | ŧ | 1 | 1 | ! | ļ | ; | : | : | : | : | ! | : | ; | 10 | ; | ł | : | 60 | 1 | • | _ | 6 | ; | 1 | : | | HARD-
NESS
(MG/L
AS
CACO3) | 1 | 1 | 1 | 1 1 | ; | ; | ; | : | ! | ! | ŀ | ; | ; | ! | ; | ! | • | ! | 1 | 58 | • | 1 | ; | 120 | | | 1 0 | 34 | ; | ; | 1 | | NITRO-
GEN.
NITRATE
DIS-
SOLVED
(MG/L
AS N) | ; | : | • • | ! ; | 1 | ; | : | 1 | • | ! | ! | • | : | • | • | ! | • | 1 | • | .23 | ; | 1 | ; | 8. | : ! | • | • 05 | • 05 | : | 1 | ŧ | | CAR-
BONATE
(MG/L
AS CO3) | 1961 | : | : | : ; | ţ | ; | ; | ; | 1 | ! | ! | ; | 1 | r | 1 | : | ; | 1 | : | c | ; | : | 8701 | | 1 | | c | O | ł | ; | 1 6951 | | DATE | .: | 27 | # # # # # # # # # # # # # # # # # # # | | 31. | 01. | 0.2 | 03 | 04 | 05 | 06. | 0.20 | 280 | •••60 | | 14 | 15. | 17 | 22.
GFP | 19. | 19 | 21
OCT | 0.4 | 1 6 1 70 | 06. | JUL | 03 | 130 | 03 | _ | | UNITED STATES DEPARTMENT OF INTERIOR - GFOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVEH AK | SED.
SUSP.
FALL
DIAM.
& FINER
THAN
.016 MM | 111 | 1111 | 1111 | !!!!! | 11131 | 68 1 | 11 9 6 | 5 1 1 | |---|-----------------|------------------------------|---|---|------------------------------------|-----------------------|------------------------|------------------------------------| | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(70339) | 1 1 | !!!! | 1111 | 11111 | 11141 | 61 1 61 | | 3 1 1 1 | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(70338) | 111 | 1 1 1 1 | 1111 | 11111 | 11171 | 2231 | 11 4 4 | † † † † | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(70337) | 111 | ! ! ! ! | :::: | 11111 | 1321 | 1 4 4
1 ~ 10 | 31 12 | | | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | ; ; ; | | 1111 | 11111 | 11111 | c ; | 6 0 | | | SOLIDS.
01S-
SOLVED
(TONS
PER
DAY)
(70302) | 111 | | 1111 | 11111 | | 98 99 | 792 | | | SOLIDG.
SUM OF
CONSTI-
TUENST.
DIS-
SOLVED
(MG/L) | 1 1 | : : : : | !!!! | 11111 | | £11 + 3 | 134
65 | : | | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | 1 1 1 | | 1111 | !!!!! | 11111 | 111 1 | 1600 | | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2) | 11 | 1111 | | 11111 | | F 1 1 5 | | | | FLU0-
RIDE:
DIS-
SOLVED
(MG/L
AS F) | 111 | | :::: | !!!!! | ::::: | 0 - | | : | | SULFATE
015-
SOLVEN
(M6/L
AS SO4)
(00945) | 1967 | 1111 | 1111 | 11111 | 1,1111 | 1969 | 13 | 696 | | DATE | Jul. • 19
26 | 2000
2000
2000
2000 | AUG
000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 111
14
17
17
17
SEP | 19
21
0CT
04 | 06
JUL
03
8UG | 007
03
NOV
27
MAR 1 19 | UNITED STATES DEPARTMENT OF INTERIOR - GFULUGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AR | ۹ | | |-----|--| | ΛŢ | | | à | | | | | | ₹ | | | Ξ | | | Ţ | | | ₹ | | | õ | | | x | | | ш | | | - | | | ∢ 3 | | | | | | ្រុះឃុំ ដែ្កិ៍ | | | ; | 1~ | N N | |---|--|--|--|-----------------------|-------------------------------| | SEDI-
MENT.
DIS.
CHARGE.
SUS.
PENDED
(1/DAY) | 1630
1040
766
864
867
853 | 5800
1010
11160
1380
2200 | 1446
985
4450
2890
4150
632 | 53 | 550
615
4.1 | | SEOI-
MENI,
SUS-
PENDED
(MG/L) | 243
200
150
172
169
158 | 775
173
179
189
235
288
337 | - M - M - M - M - M - M - M - M - M - M | 399
44 + 44
100 | 134
138
8 | | ELEV. OF LAND SUMFACE DATUM (FT. ABGVE NGVD) | 111111 | 1111111 | 111111 11 | 1 1 11 | 250.00 | | 180N
(UG/L
AS FE)
(71885) | 111111 | 11111111 | 1,1111111111111111111111111111111111111 | 1 1 0 11 | 1100 | | NITRO-
GEM.
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | 111111 | 1111111 | 1111111 01 | 1 0 0 1 | . 20 | | SED.
SUSP.
FALL
DIAM.
FINER
THAN
1.00 MM | 111111 | 11111111 | | 100 | 1 1 1 1 | | SED. SUSP. FALL DIAM. R FINFR THAN 500 MM (70345) | 111111 | 11111111 | 111101 10 | 6 1 11 | 100 | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.250 MM | 111111 | 11111111 | 111191 10 | 6 1 11 | 6 6 1 1 | | SED.
SUSP.
FALL
DIAM.
% FINFR
THAN
.125 MM | 111111 | 11111111 | 111161 16 | 26 | 8 6 8 | | SED.
SUSP.
FALL.
BIAM.
FINER
THAN!
.062 MM | 111111 | 1111111 | 31 14111 | S | 88 80 1 1 | | SED.
SUSP.
FALL
DIAM.
FINEX.
71AN. | 7967 | ;;;;;;;; | | 768 | 7 7 1 1 | | 0 A T E | 200
200
200
300
300
300
300
300
300
300 | 0010
000
000
000
000
000
000 | 0 1 4 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | _ | JUJE
03
13
05
NOV | UNITED STATES DEPARTMENT OF INTERIOR - CEULOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | BICAR-
BONATE
(MG/L
AS
HC03) | 104 | ł | 1 | • | ; | 9 + | 1 | 109 | 1 1 | 100 | 72 | 53 | 84 | 18 | 102 | 91 | ; | |---|--------------|------|-----------|-----------|-------|--------------|-----------|------|-------------|-----------------|------------|----------------|--|---------------|------|--------------|------| | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | 85 | : | ; | ! | ; | 8 E | ; | 68 | 1; | 8 | 26 | £ 1 | 39 | 99 | 84 | 75 | 1 | | CARBON
DIOXIDE
DIS-
SOLVED
(MG/L
AS CO2) | 2.1 | 1 | ; | ; | ; | 1.5 | ; | 2.2 | :: | 1.3 | 10. | 1.3 | r i | 1.3 | 2.1 | 2.3 | ; | | РН
(2017/15) | 7.9 | ; | 1 | • | ; | 7.7 | 1 | 6.1 | :: | 8 | 8.1 | 7.8 | 0 0 | 01 |
4.7 | 7.8 | 1 | | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | 233 | 217 | 146 | 81 | 109 | 113 | 509 | 233 | 172
172 | 212 | 157
157 | 121
121 | 112 | 186
186 | 228 | 195
195 | 133 | | COLOR
(PLAT-
INUM-
COBALT
UNITS) | 0 | 1 | ; | i | ; | 0 | 1 | 0 | 11 | ! 0 | 10 | w į | ហៈរ | <u>ا</u>
۱ | ¦ | r. | 1 | | STREAM
STAGE
(FT
ABOVE
DATUM) | ; | ! | 1 | ł | 1 | 7.34 | ; | ! | :: | !! | : : | 11 | ! ! | 11 | ; | ! ! | 1 | | STREAM-
FLOW.
INSTAN-
TANEOUS
(CFS) | 53 | 106 | 266 | 1660 | 299 | 0762 | 121 | 06 | 78
78 | 279 | 670
670 | 866
866 | 784
793 | 168
168 | 4 | 120
120 | 715 | | TEMPER-
ATURE
(066 C) | 0. | 1.0 | 7.0 | 6.0 | 7.0 | 4.0 | 0 | 0. | 4 4
մ.ս. | 8
0.8 | 8 8
0 • | 8.0 | 6.0 | ភ.ភ. | 0• | 44 | 6.5 | | Ξ
Σ
L | 1969
1200 | 1230 | 1245 | 1130 | 1530 | 1430
1515 | 1500 | 1200 | 1000 | 1030 | 1445 | 1400 | 1030 | 1115 | 1230 | 1030
1300 | 1330 | | DATE | MAR + 19 | 20 X | M&Y
27 | JUL
15 | 20.00 | 97.
97. | DEC
16 | . : | 62 | AAY
21
21 | 16.
16. | 28
28 | 200
200
200
200
200
200
200
200
200
200 | :: | 10 | 19. | 21 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | MAGNE-
SIUM•
DIS-
SOLVED
(MG/L
AS MG) | 6.1 | : | ľ | • | ! | 3.2 | : : | 5.0 | : | ; | 1.5 | ; ; | 3.6 | 2.8 | ; | 2.6 | ! | 4.5 | ! | : | 70.5 | ! | : | |---|------------------|---|----|----------|------|------|-----------|------------|--------|---|------|-----|----------|-----|-----------|-----|-----------|-----|------------------|-----|------|--------------|----| | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | 32 | ; | ; | ; | 1 | 15 | : : | 37 | 1 | : | 35 | ; | 24 | 18 | ; | 17 | ; | 59 | : | ; | 31 | : | : | | HARD-
NESS*
NONCAR-
BONATE
(MG/L
CACO3) | 21 | ; | ; | ; | ; | 13 | : : | 52 | i | • | 20 | : 1 | 17 | 12 | ; | 14 | 1 | 56 | ; | 58 | 23 | 1 | ; | | HAMD-
NESS
(MG/L
AS
CACO3) | 106 | ! | • | ł | : | 12 T | : : | 114 | ; | ; | 101 | . ! | 92 | 52 | 1 | 53 | 1 | 92 | ; | 113 | 86 | ; | i | | PHOS-
PHATE.
ORTHO.
DIS-
SOLVED
(MG/L
AS PO4) | ; | ! | i | ; | ; | : : | : : | ; | ; | ! | 100 | 1 | : | 1 | ; | ! | ; | ; | : | ; | ; | ! | ; | | PHOS-
PHATE,
TOTAL
(MG/L
AS PO4) | ! | ; | ; | i | ; | 1 1 | 1 | ; | ; | 1 | 1 1 | ; ; | ; | ; | ; | ; | | ! | • | ; | 1 | } | ; | | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | .36 | ł | ; | : | ! | .18 | : ; | .32 | ; | ! | | : 1 | •23 | .16 | : | .07 | : | .27 | ; | ; | • 36 | ; | : | | NITRO-
GFN•
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | i | ľ | ! | i | 1 | : : | . 1 | ł | ; | 1 | 1000 | , | : | : | ! | ! | ľ | ; | : | ; | i | 1 | : | | NITRO-
GEN•
ORGANIC
TOTAL
(MG/L
AS N) | ; | ; | : | 1 | ; | ; ; | : : | ; | ł | 1 | | . ; | 1 | ; | 1 | 1 | : | 1 | ; | ; | ; | ì | ! | | CAR-
BONATE
(MS/L
AS CO3) | C | ł | ! | ; | ; | c | | c
c | ; | • | 0 | | 0 | c | 1 | c | ; | c | | c | ; | ; | ï | | B
DATE A | MAR , 1969
26 | 200
200
200
200
200
200
200
200
200
20 | 27 | 15
15 | 20.0 | 07 | 0EC
16 | MAR , 1970 | A P.R. | | | JUN | 16 | 22 | 72
AUG | 7 B | 78
OCT | 15 | 15
MAR : 1971 | : | 19 | 19•••
Jak | 21 | UNITED STATES DEPARTMENT OF INTERIOR - GFOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | • | ! | : | : | ; | ; | • | ; | : | ; | : | ; | ; | ! | i | • | : | ; | : | 100 | : | i | 110 | • | ; | |--------------------|--|-------------|---------------------------------------|----|----|-------|-----|----|------|----------|----|----|----|-----|-----|-----|--------------|-----|--------------|-----|-----|-------|-----|-----------|----|----| | | IRON•
DIS-
SOLVED
(UG/L
AS FE)
(01046) | i | ; | ; | : | ! | : | : | ; | ; | • | : | 1 | 1 | ; | : | ; | 1 | : | ; | 40 | ; | : | 100 | ; | : | | | SILICA,
DIS-
SOLVED
(MG/L
AS
SI02)
(00955) | 4.0 | ; | : | ; | ; | 3,3 | ; | ; | 3.5 | ; | ; | ; | 4.3 | ; | 3.1 | 3•3 | ! | 2 . 8 | ; | 4•1 | ; | 1 | 4.5 | ; | ; | | | FLUO-
RIDE:
DIS-
SOLVED
(MG/L
AS F) | •1 | 1 | : | ; | ; | 0. | : | 1 | 0. | : | 1 | ; | | 1 | -: | | | 0 | 1 | 0. | 1 | ! | 7. | 1 | 1 | | ¥⊥ | SULFATE
DIS-
SOLVED
(MG/L
AS 504)
(00945) | 92 | : | ; | ; | ! | 18 | ! | : | 28 | ; | : | 1 | 23 | ; | 20 | 16 | ; | 15 | ; | 21 | ; | ; | 25 | ; | ; | | WATER QUALITY DATA | CHLQ-
RIDE.
DIS-
SOLVED
(MG/L
AS CL) | 3.2 | ; | ; | ; | ţ | ۲, | Ì | ţ | 1.4 | 1 | ; | ; | 4. | ; | 7. | ۳, | ; | 1,5 | ; | 1.5 | ; | ; | 1.8 | 1 | 1 | | WATER C | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | 1.4 | • | ; | ! | ; | 2.2 | 1 | ! | ហ្ | 1 | ; | ! | ស្ | ; | 4 | 4. | ! | 4. | ! | 4. | ! | ¦ | ۲. | ; | ł | | | PERCENT
SODIUM
SODIUM | ^ | ; | i | I | : | • | ! | ł | 9 | i | 1 | ; | 7 | ł | - | vo | : | c | ; | c | ï | ; | 7 | 1 | 1 | | | SONTUM
AD-
SORP-
TION
RATIO | | ; | ; | } | ; | | ; | i | . | 1 | ; | ; | ٥. | ; | 7. | | ! | - | ; | | : | ; | ٠. | : | 1 | | | SONTUM, | 1969
3.5 | 1 | ; | ; | ; | 1.7 | 1 | 1970 | 3.6 | ; | ; | ; | 3.6 | ; | 2.5 | 1.8 | ; | ~
~ | ; | 5.9 | | ; | С
Г | ; | ; | | | DATE | MAR + 19 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 27 | 15 | 20.05 | 07 | 26 | : . | • | 29 | 29 | 21 | 21 | 16. | • | 30r
22••• | 25° | 96. | 28. | 15 | 15.00 | . : | MAY
19 | 19 | 21 | | SCHLINGS - STATES DEARWITERIOR - GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR - GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR - GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR - GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR - GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR - GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR GROLOGICAL SURVEY SIGN - STATES DEARWITERIOR DEARW | PH
DISTRICT O | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
125 MM | ; | : | 83 | 85 | 16 | 68 | 1 | ! | : | : : | ł | : | 1 1 | } | 90 | 1 6 |)
} | | : | 1 | 16 | 89 | |--|------------------------|------|---|------|---|----|----|--------|-----|----------|-----|---|-----|---|----------|-----|-------------|-----|-----|----------|------|----------|---|------------|----| | STATES STATES DEPARTIFENT OF INTEHTOR — GFOLOGICAL GFOL | ٥ | | SED.
SUSP.
FALL
DIAM.
FINER
THAN
062 MM | ! | : | 73 | 82 | 68 | 81 | } | : | ; | 11 | ; | • | ; ; | } | 73 | 1 6 | 0 | 1 1 | • | ; | 1 80 | 11 | | SULTED STATES DEPARTMENT OF INTERIOR - 15277100 - EAGLE HAVER GOLDS HAVER GUALITY DATA WATER GUALITY DATA WATER GUALITY DATA SCHOOL SHIPS HAVE | | | | | ; | 65 | ; | : | 1 1 | } | • | ; | 11 | ; | : | ; ; | } | 11 | ; | : | 1 1 | ; | 1 | :: | : | | SCLINS, SOLIDS, SOLIDS, SCD, SED, SED, SCH OF AT MATER GUALITY OF STATES DEPARTMENT OF SCOLIDS, SOLIDS, SUSP, SUSP | | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.016 MM | i | : | 46 | 99 | ; | 9 | • | 1 | : | !! | : | 1 | ; ; | 1 | 11 | ; | : | • | ! | ; | 1 0 | ! | | SCLINS, SOLIDS, SOLIDS, SCD, SED, SED, SCH OF AT MATER GUALITY OF STATES DEPARTMENT OF SCOLIDS, SOLIDS, SUSP, SUSP | NTERIOR -
GLE RIVER | A | 01- | 1 | 1 | 35 | 1 | ; | 1 1 | 1 | 1 | 1 | 11 | ; | 1 | 1 1 | } | :: | : | ! | ; | : | ! | 11 | 1 | | SCLIUS. SCHOOL 105. 105 | HENT OF I | 0 | C 1- | 1 | ; | 25 | 50 | ; | 47 | ; | • | ; | 11 | ; | ; | • • | • | : : | 1 | • | 1 | 1 | ; | 37 | ; | | SCLIDS
SCIM OF
SCIN OF
DIS-
TUENTS, SOLVE
DIS-
PFR
(TO301) (T0302)
1969 132
19.
1970
1970
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971 | | ATER | ∵ • | ; | ; | 16 | 39 | ; | 36 | i | ; | ; | ; ; | ; | ! | • (| } | : : | ; | ; | ; | • | : | 27 | ; | | SCLIDS
SCIM OF
SCIN OF
DIS-
TUENTS, SOLVE
DIS-
PFR
(TO301) (T0302)
1969 132 19.
1970
1970
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971 | 17E0 STAT
152771 | | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT | • | ł | ł | 1 | i
i | 60. | | ť | | : : | | | 1 - | 91 • | 6 1 | 60. | 1 | •14 | ! | ! | 116 | ! | | SOL 183
SOM OD
SOL 181
1969
1969
1970
1970 | Š | | SOLIDS,
015-
50LVED
(TONS
PFR
DAY)
(70302) | 19.6 | | ! | 1 | ł | 540 | : | | ~ | : : | ł | 91.1 | | 701 | i | 38 | : | 41.6 | ł | | 38.2 | ł | | ш | | | SOL 155.
SUM OF
COUSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | 13 | ; | ; | ; | 1 | 89 | } | 1 | - | 11 | | 2 | 1 6 | | x | 9 | ! | 0 1 | ı | : | ~ 1 | : | | | | | ⋖ | ~ : | : | - | _ | : | _ | 06C | : - | • | • • | _ | | _ | _ | | | 001 | • | : - | : | | 21 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | | SEDI-
MENT.
DIS-
CHARGE.
SUS-
PENDED
(T/DAY) | 1 | 6.9 | 729 | 672 | 100 | 7950 | 3,3 | • | 40 | 0.5 | 16 | 29 | : | 113 | 1 | 98 | : " | • 3 | 7.0 | 63 | 280 | |--------|---|---------|-----------|-----------|--------------|-----|--------------|-----|-----|-----------|-----|-----|-----|----------|-----|-----------|----------------|-----|----------|-------|-----|--------| | , | SEDI-
MENT.
SUS-
PENDED
(MG/L) | i | 54 | 272 | 150 | 26 | 1002 | 10 | 1 | 16 | 81 | 21 | 9° | ; | 45 | • | 94 | 1 4 | D | 6 | 193 | 145 | | | 180N
(UG/L
AS FE)
(71885) | 370 | ; | • | ! | ; | 160 | ; | 10 | • | ! | 70 | 100 | 4 0 | -1 | 0 | 1 | ; ; | • | ; | ! ! | 1 | | | MANGA-
NESE
(UGZL
AS MN) | ł | ; | ; | 1 | ; | ° ¦ | ; | 20 | 1 | ! | ! 0 | 10 | 9 6 | • | 0 | ! | 1 | !
! | 1 | :: | ! | | DATA | NITRO-
GEN.
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | 1.6 | ; | ł | 1 | ! | 8. | ! | 1.4 | ! | 1 | 8.0 | 1 9 | 04. | : | • 30 | ; | 1.2 | ; | 1 | 1.6 | ! | | UALITY | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | 1 | 1 | ; | ; | 1 | 11 | ; | 1 | 1 | ! | 100 | 1 1 | 1 | 1 | 1 | 1 | 1 | ì | 1 | :: | 1 | | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
2.00 MM | 1 | ; | ; | ł | ľ | 100 | ; | ; | 1 | ; | :: | 1 1 | | ; | ; | ; | : | : | ; | :: | 1 | | | SED.
SUSP.
FALL
DIAM.
% FINER.
THAN
1.00 MM | ľ | ; | 1 | ; | i | 100 | ; | ; | ! | ; | 11 | 1 1 | | ł | ; | : | i | : | 1 | :: | ; | | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(70345) | ; | ; | 100 | 100 | ļ | 6 ; | ; | ! | ; | i | ; ; | 1 | ! | 100 | ; | 100 | 1 | ! | ; | 100 | 100 | | | SUSP.
SUSP.
FALL
DIAM.
& FINER
THAN.
250 MM | 1969 | • | 96 | ው
የ | 100 | 97 | ; | 970 | 1 | 1 | :: | ; ; | | 95 | 1 | φ ₀ | : | 971 | ! | 1 d | Q
a | | | OATE | MAR . 1 | APR
29 | MAY
27 | الالا
15. | AUG | 00.1
07.1 | | ~ . | APR
29 | | 21 | 16. | JUL 22 | 200 | AUG
28 | 78
073 | | | 10. M | 5 6 | JJN 2 | UNITER STATES DEPARTMENT OF INTERIOR - GFOLOGICAL SURVEY 15277100 - EAGLE P AT EAGLE RIVER AK WATER QUALITY DATA | | | | | | | | _ | | | | | _ | | _ | |---|---------|------------------|---------|----------|-----------|------|-------------|------------|-----------|-----------|---------------------|------------|-------------|-------------| | CARBON
DIOXIDE
DIS- | CMG/L | AS CO2) | 0 | • | 1 | 1.3 | 3.4 | 1.4 | 15 | 1 | 4.2 | 1 | i | 1 | | ם
מ | = | (O0400) | ď | ; ; | ; | 8.0 | 7.7 | 9.0 | 9.9 | : | 7.6 | 1 | 7.1 | 7.4 | | OXYGEN. | SOLVED | (MG/L) | ; | ; | ; | : | ; | 1 | • | ì | } | ! | ; | 11.8 | | SPE-
CIFIC
CON- | ANCE | (S0000) | 133 | 103 | 97 | 173 | 231 | 183 | 7.7 | 162 | 227 | 215 | 101 | 170 | | COLOR
(PLAT- | COBALT | (00000) | : | ; | i | ł | ហ | 0 | 22 | ; | ď | ; | : | ; | | TUR | ITY | (011) | 1 | : | ! | ; | : | 1 | i | ç | 1 | ß | i | ; | | STREAM
STAGE | ABOVE | 0ATUM) | ; | 1 | ; | ! | ; | ; | ; | ; | ł | ; | 6.04 | ; | | STREAM-
FLOW+ | TANEOUS | (CFS)
(00061) | 715 | 3500 | 3050 | 304 | 14 | 373 | 1620 | 346 | 51 | 76 | 1290 | 378 | | 10 V 10 01 10 V | AREA | (SQ MT) | | 1 | ; | 192 | 192 | 192 | 192 | 192 | 192 | 192 | 192 | ; | | - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ATHRE | (DEG C) | ر
ب | 9 | 0.9 | 3.0 | c. | 0.6 | 6.5 | ŀ | 0 | 7.0 | o•& | 7.0 | | | TIME | | 971 | JUL 1130 | 1130 | 1000 | 972
1100 | 1100 | 1200 | 1100 | 9 73
1130 | 1115 | 974
1630 | 981
1000 | | | | DATE | JUN . 1 | J.C. | AUG
14 | 0C.T | MAR , 1 | 000
000 | AUG
03 | 0CT
04 | 7.5.0. | MAY
08. | 12 | MAY , 1 | UNITED STATES DEPARTMENT OF INTERIOR - GFOLOGICAL SURVEY 15277100 - EAGLE P AT EAGLE RIVER AK | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | ; | : | ; | ! | 5.4 | 5.0 | 1.8 | ; | 5.2 | ; | : | ; | |---|------------|-----------|-----------|----|------|---|---|------|------------|------|--------|------------| | CALCIUM
D1S-
SOLVED
(MG/L
AS CA)
(00915) | ł | ; | 1 | • | 36 | 27 | 12 | : | 34 | : | ; | ; | | HARD-
NESS.
NONCAR-
BONATE
(MG/L
CACO3) | 12 | ; | 1 | 20 | 54 | 18 | 7 | ; | 20 | : | ; | 1 | | HARU-
NESS
(MG/L
AS
CACO3) | 9 | 1 | 1 | 85 | 112 | 88 | 37 | 1 | 110 | | ! | ! | | PHOS-
PHORUS,
ORTHO,
DIS-
SULVED
(MG/L
AS P)
(00671) | ; | ł | ; | ; | 1 | ł | .050 | ; | <.010 | 1 | ; | ł | | PHOS-
PHATE,
ORTHO,
0IS-
SOLVED
(MG/L
AS PO4) | i | ŧ | ; | i | 1 | ŀ | •15 | 1 | 00. | • | : | : | | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | ł | 3 | ; | ; | ; | • 02 | ; | .18 | ; | i
i | ; | | NITRO-
GEN,
GEN,
NITRATE
SOLVED
(MG/L
AS N) | | ; | 1 | : | • 20 | •25 | ; | 1 | ; | ; | ; | ł | | CAR-
BONATE
(MG/L
AS CO3) | | 1 | ; | 0 | 0 | c | 0 | 1 | 0 | ; | ; | i | | BICAR-
BONATE
(MG/L
AS
HCO3) | 63 | ; | 1 | 42 | 107 | 85 | 37 | ; | 105 | ; | 1 | ; | | ALKA-
INITY
FIELD
(MG/L
AS
CAC03) | 52 | : | ; | 65 | 88 | 70 | 30 | 1 | 96 | ; | ł | : | | PIN
FIR
(MC)
(MC)
(MC) | JUN , 1971 | JUL
14 | AUG
14 | 04 | 30 | Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 • • • 0 0 3 • • • 0 0 3 • • • 0 0 3 • • • 0 0 3 • • • 0 0 3 • • • 0 0 3 • • 0 0 3 • • 0 0 3 • • 0 0 3 • • 0 0 3 • 0
0 3 • 0 0 0 3 • 0 0 0 3 • 0 0 0 3 • 0 0 0 3 • 0 0 0 0 | 0.4. | FEB , 1973 | 0.80 | 12. | MAT + 1961 | UNITED STATES DEPARTMENT OF INTERIOR - GFOLOGICAL SURVEY 15277100 - EAGLE R AT EAGLE RIVER AK | , | | | | | | | | | | | | | |--|-------|----|----|----|------------------|------------|-----------|-----|------------|----|------------|------------| | MANGA-
NESE.
DIS-
SOLVED
(UG/L
AS MN) | ; | i | ; | ; | 90 | 10 | 30 | ; | 20 | ; | ; | i | | IHON.
DIS.
SOLVED
(UG/L
AS FE) | : | ; | : | ; | 30 | 7.0 | 06 | ; | 4 0 | i | ; | 1 | | COPPER,
01S-
SOLVED
(UGAL
AS CU)
(01040) | ; | ; | ; | ; | 0 | ; | ! | ; | ; | ; | ; | ; | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | : | 1 | i | ! | 8.1 | 2.7 | 2.1 | ; | 6.3 | : | : | : | | FLU0-
RIDE.
DIS-
SOLVFD
(MG/L
AS F) | ł | ; | : | ; | •1 | £• | 0. | ; | | 1 | ł | ; | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | • | : | ! | 1 | 92 | 19 | 6.8 | 1 | 28 | 1 | ! | ! | | CHL0-
RIDE.
DIS-
SOLVED
(MG/L
AS CL) | ; | 1 | 1 | ; | 2.5 | 1.8 | 1.4 | 1 | 1.7 | ; | ł | ; | | POTAS-
STUM.
DIS-
SOLVED
(MG/L
AS K)
(00935) | i | 1 | i | : | î. | • 5 | Ċ, | ; | 4. | ; | 1 | : | | PERCENT
SOUTUM
(00932) | 1 | 1 | ; | ; | 9 | 8 | 7 | ļ | 7 | 1 | ; | ; | | SONTUM
SORP-
TION
RATIO
(00931) | ! | ; | ; | | .1 | ~ : | | ! | 5. | ; | ; | i | | SOCTUM,
DIS-
SOLVED
(MG/L
AS NA) | ; | ; | i | i | 3,3 | 3.5 | 1.2 | ŀ | 1-7 | ł | | 1 | | SOI
D
SOI
DATE A | 21.00 | 16 | 14 | 04 | MAR , 1972
30 | 19.
19. | AU6
03 | 00T | FER . 1973 | 90 | JUL • 1974 | MAY , 1981 | UNITED STATES DEPARTMENT OF INTERIOR - GEOLUGICAL SUMVEY 15277100 - EAGLE R AT EAGLE RIVER AK | , | | | | | | | | | | | | | |---|------------|------|-----|-----|------|-------------|------------|-----|------|------|----|-----| | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
(10340) | : | 58 | 9 | ; | : | : | 56 | ; | 1 | : | ; | : | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.008 MM | : | 48 | 46 | ; | ; | ; | : | ! | ; | 1 | i | ; | | SED.
SUSP.
FALL
DIAM.
& FINER
THAN
(70338) | i | 43 | 39 | ; | ; | ; | 38 | ; | 1 | 1 | ; | i | | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.002 MM | : | 33 | 32 | ! | 1 | : | 54 | ; | | ; | ; | ; | | SOL 105.
015.
SOL VED
(TONS
PER
AC.FT) | ; | ŧ | ; | : | .18 | .14 | • 00 | : | • 18 | ; | ; | ; | | SOLIDS.
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | 1 | 1 | ; | 1 | 17,3 | 104 | 201 | ; | 18.2 | : | ; | ; | | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | ; | ; | 1 | ł | 136 | 103 | 46 | 1 | 132 | ; | ; | 1 | | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | ł | : | ł | ! | 0 | : | i | ł | ł | ; | ł | ; | | ZINC.
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ; | ; | ; | i | C | ; | i | ; | 1 | ; | ; | ; | | STRON-
TTUM.
DIS-
SOLVED
(467L
AS SR) | 171 | 1 | 1 | : | 290 | 1 | ; | • | 7. | : | | 187 | | :
AATĒ | JUN + 1971 | JUL. | AUG | 001 | 30 | . 60
000 | AUG
03. | 100 | | 0.80 | 12 | 12 | | | | | | | | | | | | | | | | i | ELEV.
OF LAND | MITRO-
GEN+ | SED. | SED.
SUSP. | SED.
SUSP. | SED.
SUSP. | SED.
SUSP. | |---|--------------------------------------|----------------|------|--------------------|---------------|---------------|---------------| | | | | | | | | | | | 15277100 - EAGLE R AT EAGLE RIVER OK | | ΤA | WATER GUALITY DATA | WATER OF | | | | SEDI- | D15- | CH ARGE . | SUS- | PENDED | (T/DAY) | (56108) | | 1 | 13600 | 4080 | | 7 | ; | 41 | 433 | 19 | • | 1.3 | i | : | |-----------------------------|---------|-----------|-----------|--------|----------|---------|--------|----|-------|------|--------|--------|---------------------------------------|--------|---------------|--------|--------|-----------|---------|------| | | SEDI- | MENT. | SUS- | PENDED | (MG/L) | (80124) | | • | 1440 | 495 | ļ | 57 | 1 | 41 | 66 | 20 | ; | ហ | : | : | | ELEV. | SURFACE | DATUM | (FT. | ABOVE | NGVD) | (15000) | | • | ; | ; | ;
; | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | 250.00 | ; | | MITRO-
GFM. | VITRATE | DIS- | SOLVED | (MG/L | AS NO3) | (71851) | | ! | : | ; | | | 06. | 1.1 | ; | i | ; | l | 1 | 1 | | SED. | 100 | DIAM. | % FINER | NAIL | 1.00 MM | (10346) | | • | ; | 100 | | ! | 1 | ; | ; | ; | ; | ; | ; | 1 | | SED. | F A I | OIAM. | A FINER | ZYI | . 500 MM | (70345) | | • | 100 | 66 | | • | 1 | 100 | 100 | 1 | ; | ţ | ; | 1 | | SED. | | DIAM | & FINER | THAL | .250 MM | (70344) | | ; | 46 | 44 | | !
! | 1 | 66 | 86 | ; | ; | ; | ; | ; | | 560. | - 18 1 | O LAM. | FINER | THAN | . 125 MM | (70343) | | ; | 16 | 93 | | : | ; | 95 | 88 | 1 | ; | : | ; | : | | SED. | 5000 P | O T A M | A FINFR | THAN | .062 MM | (70342) | | ; | 81 | 85 | | 1 | ; | 86 | 7.7 | | ; | : | ; | ; | | • 0
C: 0
U: 0
U: 0 | - LCOC | | MAN TO SE | ZVIL | .031 MM | (70341) | 971 | : | 69 | 20 | | : | • • • • • • • • • • • • • • • • • • • | ì | 1 | • | . 1973 | ; | 1974 | 1981 | | | | | | | DATE | | UN . 1 | 21 | 14 | J6 | CT | 0.4 | 30 • • • | 175 | 1.JG
03••• | 04 | EB , 1 | 1AY
08 | IUL , 1 | | PROCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY | AGENCY USGS
COUNTY 020 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 0000
••••
••• | 0000
•••••
••• | 00000

mmmuno | 00000 | 00000
•••••
mmmm | 3 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | |-----------------------------------|-----------------------|--------------------------------------|----------|----------------------------------|----------------------------------|------------------------------|---|--|--|---| | SOUNCE
STATE 02 | SEPTEMBER 1968 | MEAN
CONCEN-
TRATION
(MG/L) | DECEMBER | | | | | | | | | STREAM
DATUM 250.00 | 10 | NEAN
DISCHANGE
(CFS) | 3 | 80
75
75
75
87 | 75
70
70
70
70
70 | 70
70
70
90
90 | 100
85
80
80
75 | 25
7
7
7
8
9
9
9
9 | 70
70
100
140
2540 | , | | 192.00 DA | YEAR OCTOBER 1967 | SEDIMENT
DISCHARGE
(TONS/DAY) | | 30
30
10
10
10
10 | \$0499
00000 | mm400 | 6.0.
7.0
8.0 | 20
20
10
7.0
6.0 | NN 4 4 W 98 O | • | | E RIVER AK
NPAINAGE AREA | DAY), WATER | MEAN
CONCENT
TRATION
(MG/L) | NOVEMBER | | | | | | | | | AT EAGLE RIVER AK
NRAINAGE A | SUSPENDED (TONS/DAY). | MEAN
DISCHAPGE
(CFS) | | 334
273
208
197
167 | 115
85
75
70
70 | 70
70
80
100
110 | 115
120
130
150
170 | 216
208
186
117
110 | 39 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ı | | 0 EAGLE H
1493332 | ARGE. | SEDIMENT
DISCHARGE
(TONS/DAY) | | 100
90
70
50
50 | 44400
000
000
000 | 30
30
30
30
30 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 20
20
20
10 | 30
20
20
20
20
20
20
20
20
20
20
20
20
20 | • | | 15277100
LONGITUDE | SEDIMENT DISCH | MEAN
CONCEN-
TRATION
(MG/L) | OCTORER | | !!!!! | | !!!!! | !!!!! | | | | STATION MUMBER
LATITUDE 611829 | | MEAN
DISCHARGE
(CPS) | | 5322
444
449
413 | 367
352
340
326
316 | 302
288
284
277. | 260
248
226
225
219 | 229
226
213
189
157 | 254
208
190
222
227 | | | STATIC | | ₽¢Q | | ⊣ ഗ.യ 4 N | 6 6 6 0 1 | 113 | 61
18
19
05 | 222 | 26
27
29
29
30
31 | | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY PROCESS DATE IS 12-03-81 | 4 SOURCE AGENCY USGS | STATE 02 COUNTY 020 | |---------------------------|---------------------| | STREAM | 250.00 | | | DATUM | | | 192.00 | | EAGLE R AT EAGLE PIVER AK | NPAINAGE AREA | | EAGLE | 1493332 | | 15277100 | LONGITUDE | | STATION WUMBE | LATITUDE 611828 | | STATION N
LATITUDE | STATION MUMBE
LATITUDE 611828 | 15277100
LONGITUDE | EAGLE R
1493332 | AT EAGLE PIVER
NRAINAG | E PIVER AK
Npainage area | 192.00 DA | STREAM
DATUM 250+00 | IAM SÖURCE | AGENCY USGS
COUNTY 020 | |---|--|--------------------------------------|---------------------------------------|----------------------------|--------------------------------------|---|----------------------------|--------------------------------------|-------------------------------------| | | | SEDIMENT DISCHARGE. | SCHARGE, SUSP | ENDED (TONS/ | DAY), WATER | SUSPENDED (TONS/DAY), WATER YEAR
OCTUBER 1967 | 2 | SEPTEMBER 1968 | | | > | MEAN
DISCHARGE
(CFS) | NEAU
CONCEN-
TRATION
(MG/L) | SFUIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | MEAN
DISCHARGE
(CFS) | MEAN
CONCEN-
TRATION
(MG/L) | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | JANUARY | | | FEBRUARY | | | MARCH | | | ለ m 4 ID | 11
955
95
85
85 | | @ 40 N 4 4
0 0 0 0 0 0 | 00000
LLLLLL | | 00000 | 0 0 0 0 0
0 0 0 0 0 | | 00000 | | 9788G | 2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 6666 6 | | 00000 | 00000 | | 00000 | | T.E. 450 | 00000
0000
0000
0000 | | 00000 | 00000
20000 | | 00000 | 00000 | | 00000 | | 21
18
19
20 | ភ ៤ ១ ១ ១
ស ស ស ស ស | | 00000 | 00000
02000 | | 00000 | 00000 | | 00000 | | 21
22
22
24
25 | \$ \$ \$ \$ \$ \$ \$
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | 00000 | 00000
0000 | | cc000 | 00000 | | 00000 | | 4 K B B B B B B B B B B B B B B B B B B | ራ æ æ æ æ æ
ሚኒስር ሲያ | | 000000 | ~~~~!!
••••!! | | 0000 | 000000 | | 000000 | | TOTAL | 2220 | | Đ•3•0 | 1843 | | 44.0 | 1880 | | 31.0 | PRUCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF THTERIOR - GEOLUGICAL SURVEY SOURCE AGENCY USGS STREAM 15277100 EAGLE R AT EAGLF RIVER AK STATION NUMBER | COUNTY 020 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 46844
4686
468 | 27
22
32
32
48 | 257
679
772
704 | 685
284
254
254 | 239
188
157
129 | 146
127
105
773 | 1400 | |-----------------|-----------------------|--------------------------------------|-------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------|--|---|--------| | STATE 02 | SEPTEMBER 1968 | MEAN
CONCEN-
TRATION
(MG/L) | JUNE | 233
33
33
33
33 | 17
15
20
27 | 53
105
215
220
185 | 135
130
84
80 | ~ 6.6 € ∨ 0.00 € ∨ 0.00 € 0 | 6 4 5 5 1 1 2 5 0 3 8 5 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ; | | UM 250.00 | 1967 TO SEPT | MEAN
DISCHARGE
(CFS) | | 698
638
621
590
579 | 579
570
560
585
656 | 773
906
1170
1300 | 1450
1290
1170
1120 | 1180
1070
970
866
843 | 986
978
1090
1380
1590 | 28818 | | 192.00 DATUM | YFAR OCTOBER | SEDIMENT
DISCHARGE
(TONS/DAY) | | 44WW0 | 7.0
7.0
8.0
8.0 | 10
10
20
40
40 | 30
30
40
50 | 230
402
331
253
189 | 159
122
102
316
450
219 | 3217.0 | | SE AREA | WATER | MEAN
CONCEN-
TRATION
(MG/L) | MAY | 11111 | 9 9 | 11111 | 11111 | 242
175
130
96 | 80
65
55
140
207
95 | ; | | DRAINAGE | SUSPENDED (TONS/DAY), | MEAN
DISCHARGE
(CFS) | | 88 88 ዓ
ዓ
ዓ
ዓ | 95
100
105
110
115 | 12n
138
169
205
224 | 225
224
247
287
310 | 500
615
700
720
730 | 736
698
686
835
833
855 | 11047 | | 1493332 | ARGE, | SEDIMENT
DISCHARGE
(TONS/DAY) | | | 00000 | | | 00000
NNNN | W W W 4 4
0 0 0 0 0 0 | 48.0 | | LONGITUDE | SEDIMENT DISCH | MEAN
CONCEN-
TRATION
(MG/L) | APHIL | | | | | | | | | STATIONE BOOMER | · | MEAN
DISCHAPGE
(CFS) | | 0 C S O O | 0000 0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 66663
66669 | 64.64.64
R 22.04.04.04 | 20022 | 1894 | | LATITU | | Y A C | | የመመ 4 መ | 6 L C C C C | 12.E48 | 511
711
90
00 | 22
22
25
25
25 | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | TOTAL | | | | | | | | | | | | | UNITED STATES DEPARTMENT OF INTERIOR - GEOLUGICAL SURVEY PRUCESS DATE 15 12-03-81 STREAM SOURCE AGENCY USGS 192.00 DATUM 250.00 STATE 02 COUNTY 020 15277100 FAGLE R AT EAGLF RIVER AK LONGITUDE 1493332 DRAINAGE APEA STATION NUMBER LATITIOE 611828 SEDIMENT DISCHANGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1967 TO SEPTEMBER 1968 | SEDIMENT
DISCHARGE
(TONS/DAY) | | 150
120
120
100 | 220
200
160
100
58 | 4.14
3.88
3.66 | 30
23
16
17 | 11
10
7.59
7.58 | 484661
•••••• | 1801.4 | |--------------------------------------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|------------------| | MEAN
CONCEN-
TRATION
(MG/L) | SEPTEMBER | 73
644
57
92 | 90
78
46
30
30 | 400 mm | 30
25
20
20
20
20 | 21
22
24
44 | 8 0 8 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ; | | MEAN
DISCHARGE
(CFS) | | 773
704
668
650
780 | 898
962
914
829
710 | 54
730
730
704
704 | 376
336
317
303
282 | 243
243
233
230 | 222
222
222
222
222
222
222 | 14271 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 640
519
384
399
456 | 1260
1860
1660
1410
1010 | 803
653
677
607
470 | 385
324
344
453 | 813
388
220
280
469 | 280
240
314
240
180
170 | 18210 | | MEAN
CONCEN-
TRATION
(MG/L) | AUGUST | 150
130
106
107
109 | 240
298
268
230
175 | 172
155
151
148
132 | 108
100
100
101 | 172
105
70
85
155 | 95
88
120
95
74
72 |)
†
† | | MEAN
DISCHARGE
(CFS) | | 158n
148n
134n
138n
1550 | 1950
2310
2290
2270
2130 | 1730
1560
1660
1520
1320 | 1320
1200
1120
1260
1510 |
1750
1370
1190
1220
1120 | 1100
1010
970
954
914
958 | 44936 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 903
792
598
483
520 | 688
874
1780
2540
1730 | 969
656
524
539
555 | 578
661
616
526
579 | 642
709
980
1100
1340 | 1690
1850
1490
1350
1040 | 30074
62313.4 | | MEAN
CONCEN-
TRATION
(MG/L) | JULY | 198
180
143
125
125 | 150
175
320
417
315 | 215
149
122
121 | 138
140
130 | 135
150
190
230
260 | 285
325
295
250
182
158 | | | MEAN
DISCHARGE
(CFS) | | 1690
1630
1550
1430
1540 | 1700
1850
2060
2260
2030 | 1670
1630
1590
1650 | 1550
1610
1630
1500
1650 | 1760
1750
1910
1770
1910 | 2200
2110
1870
2000
2110 | 55040
177409 | | 747 | | 0° E 4 D | 0 r s 6 0 | 113 | 2118
200
200 | 22
23
24
24
25 | 26
77
82
92
93
11 | T014L
YF 4R | NOTE: MUMBER OF MISSING DAYS OF RECORD EXCEEDED 20% OF YEAR PRUCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLUGICAL SURVEY SEDIMENT DISCHARGE (TOMS/DAY) SOURCE AGENCY USGS STATE 02 COUNTY 020 41.49 888888 81 81 81 81 74 91119 00000 SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YFAR OCTOBER 1968 TO SEPTEMBER 1969 MEAN CONCEN-TRATION (MG/L) DECEMBER •••• ហេហេហេហ លេខខាលខាល STREAM 250.00 MEAN DISCHARGE (CFS) 80 72 60 60 60 65 65 65 65 65 500000 DATUM SEDIMENT PISCHARGE (TONS/DAY) 4444 20000 20000 192,00 MEAN CONCEN-TRATION (MG/L) NOVEMBER DRAINAGE AMEA 15277100 EAGLE R AT EAGLE RIVER AK LONGITUDE 1493332 MEAN DISCHARGE (CFS) 120 100 1000 3195 SEDIMENT DISCHARGE (TONS/DAY) 8.9 24 24 17 29 26 14 8•9 120 86.0 44.0 45.004 7.0 6.8 7.5 8.1 316.7 MFAN CONCEN-TRATION (MG/L) OCTORER 19 13 13 13 13 13 13 50000 STATION NUMBER LATITUDE 611828 DISCHARGE (CFS) MF A N 201 192 194 189 158 152 119 119 135 130 130 125 125 161 164 162 130 125 150 150 4810 6000 PAY UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY PROCESS DATE IS 12-03-81 | | | · . | | | | | | | | | |-----------------------------------|-------------------|--------------------------------------|----------|---|--------------------------|---|--|---|--|-------------| | AGENCY USGS
COUNTY 020 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 66666 | gonne | eeeeee | | 4444
8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 444600
444600 | 11.90 | | SOURCE
STATE 02 | SEPTEMBER 1969 | MEAN
CONCEN-
TKATION
(MG/L) | MARCH | ммммм | ଅଟମ ଅଟନ _୍ | ଅଟମ ପଟନ | ппппп | 44444 | 44444 | į | | STREAM
TUM 250.00 | 10 | MEAN
DISCHARGE
(CFS) | | 366
366
366
366 | 366
388
388
388 | 8 8 8 8 8
8 8 8 8 8 | 8 7 8 0 0 0 | 44444
04444 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1289 | | 192.00 DATUM | YEAR OCTOBER 1968 | SEDIMENT
DISCHARGE
(TONS/DAY) | | 7,7,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 | 7,7,7,7,1
1,7,7,7,1 | 55 55 55
55 55 55
55 55 55
55 55 55
55 55 | 35
35
35
35
35
35
35
35 | 8 8 8 8 8 | 25.58
11.58
11.58 | 7.24 | | F RIVEH AK
Orainage area | CTONSZUAY), WATER | MEAN
CONCEN-
TRATION
(MG/L) | FEBRUARY | ппппп | ппппп | папап | ппппп | ппппп | mmm | 1
1
2 | | AT EAGLE RIVER
DRAINAGE | SUSPENDED (TONS/ | MEAN
DISCHARGE
(CFS) | | | | & & & & & & & & & & & & & & & & & & & | 88888
8888 | 44444
44444 | 444111
mmm111 | 268 | | EAGLE R
1493332 | E. | SFOIMENT
DISCHARGE
(TONS/DAY) | | | 99444
666666 | 88888
8888
1888
1888 | | 29
29
28
28
88
88 | 66666666666666666666666666666666666666 | 10.37 | | 15277100
LONGITUDE | SFDIMENT DISCHARG | MEAN
CONCEN-
TRATION
(MG/L) | JANUARY | च चचचच | ~~~ | m m m m m | | | <i>ପ ପ ପ ପ ପ</i> ପ ପ | ; | | STATION NUMBER
LATITODE 611828 | | MEAN
DISCHAMBE
(CFS) | | ພພ444
ນິຣິ໖໕4 | 4444
44060 | 4444W
5056Q | ###################################### | 999444
99444 | ************************************** | 1199 | | STATION I | | DAY | | ተለመታወ | 6≻ 800
100 | 1122
132
133
134
135 | 271116
000 | 288848
48848 | 92000E | TOTAL | | PROCESS DATE IS 12-03-81 | STREAM SOURCE AGENCY USGS
192.00 DATUM 250.00 STATE 02 COUNTY 020 | |--|--| | VEY | STREAM
250.00 | | ICAL SUR | DATUM | | R - GEOLUG | 192.00 | | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY | R AT EAGLE RIVER AK
2 DRAINAGE AREA | | TEO STATE | EAGLE R
1493332 | | INU | 15277100 EAGLE LONGITUDE 1493332 | | | STATION NUMBER
LATITURE 611828 | SFDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969 | SEDIMENT
DISCHANGE
(TONS/DAY) | | 8444RR
8444RR | 34
46
72
177
162 | 112
204
334
488
726 | 4070
4190
1300
925 | 761
699
575
398
547 | 932
1150
1220
1130
23798 | |--------------------------------------|-------|--|---|---|--------------------------------------|--|---| | MEAN
CONCEN-
THATION
(MG/L) | JUNE | 998
988
988
988 | 4 6 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 46
72
103
138
165 | 668
360
298
233 | 200
185
149
110 | 217
242
252
247
226 | | MEAN
DISCHARGE
(CFS) | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 520
535
632
773
882 | 898
1050
1200
1310
1630 | 2210
2350
1890
1620
1470 | 1410
1400
1430
1340 | 1590
1760
1890
1850
1860 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 40000
40000 | 7.0
7.6
7.6
8.1
8.1 | \$ \$ \$ \$ \$ \$ \$ | 15
15
32
61
51 | 39
334
369
207
296 | 473
664
251
124
124
140 | | MEAN
CONCEN-
TRATION
(MG/L) | MAY | 20
20
20
20
20
20 | 60000
44444 | 20
20
20
20
20 | 33
32
53
106
72 | 52
249
280
150
170 | 190
232
115
75
80
100 | | MEAN
DISCHARGE
(CFS) | | 110
110
120
120 | 130
140
150
150 | 160
150
170
170 | 172
175
186
212
261 | 276
416
515
510
644 | 922
1060
808
614
575
520
9996 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 4.00.00.00.00.00.00.00.00.00.00.00.00.00 | |
5 | ~~~~~
~~~~~~ | ଅପ୍ୟସ୍ଥ
ବ୍ୟବ୍ୟସ | 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | | MEAN
CONCEN-
TRATION
(MG/L) | APRIL | ហមកម្មា | <u> </u> | σε ασιασιασιασι | 110001 | 2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00 | 2 8 8 3 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | MEAN
DISCHARGE
(CFS) | | 22 C C C C C C C C C C C C C C C C C C | 1000
1000
1000 | 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 | ແ ແ ແ ແ
c ວ ວ ນ ທ | 58
00
00
00
00
00
00
00
00
00
00
00
00
00 | 95
100
105
105
105 | | 944 | | -064s | 67 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 1130 | 15
11
19
20 | 22
22
24
25
25 | 256
259
310
1410
1410 | PROCESS DATE 1S 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLUGICAL SUMVEY SOUNCE AGENCY USGS 192.00 DATUM 250.00 STATE 02 COUNTY 020 15277100 EAGLE R AT EAGLF RIVER AK LONGITUDE 1493332 DRAINAGE AREA STATION NUMMER INTINUE STIAZE SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1968 TO SEPTEMBER 1969 | | 99 | 2; | 4 | 9. | ?;
₹ | 30 | 88 | 88 | 27 | ñ | 207 | 160 | 99 | S • | 3 | 39 | 53 | 27 | 50 | 20 | 26 | 31 | | 7 S | | 9 - | | M | 11 | ; | 1336.6 | | |-----------|-------------|---|---|---|---|--|--|---
--|--|--|--|--|--
--|---|--|---|--|--|---|------
--|--|--|---|--|------|----------|---|--|---| | SEPTEMBER | 66 | 010 | 37 | 37 | 35 | 56 | 56 | 56
26 | 26
 | u
F | 95 | 76 | 45 | 9 1 | 37 | 32 | 56 | 92
7 | 52 | 21 | 56 | 28 | 58 | 26
21 | i i | 50. | 9 5 | 14 | 12 | 1 | i | | | | 626 | 999 | 770 | 602 | 6 % 4
C | 432 | 404 | 404 | 388 | 000 | 808 | 780 | 585
5 | 510 | 4 / v | 450 | 408 | 384 | 372 | 356 | 372 | 412 | 408 | 304
324 | : ; | 296 | 267 | 356 | 348 | : | 13711 | | | | 6 | σ, | N | 4 (| າ | 785 | 593 | 437 | 300 | 007 | 230 | 154 | 115 | 62 | 7 | 68 | 9 | 85 | . 83 | 96 | | | | | · · | 9 <u>7</u> | 0 F | 2.5 | 9/ | 77 | 6805 | | | AUGUST | 7 00 | ~ 1 | 2 | N I | • | 9 | S | m | (| > | 87 | 29 | 61 | | 84 | 46 | 245 | 64 | 4 | 56 | 32 | 37 | 34 | 7 7 7
7 9
7 9 | . ! | ທ -
ທ ເ | 1 4
7 d | 37 | (A) | 4.5 | ; | | | | 1310 | 1370 | 1520 | 1560 | 0002 | 1730 | 1390 | 1190 | 1010 | * | 978 | 92V | 869 | 550 | 545 | 545 | 575 | 959 | 63A | 63я | 632 | 608 | 575 | 4
8
0
0 | , | 515 | 0.0
919 | 029 | 674 | 632 | 25072 | | | | 923 | 767 | 812 | 1020 | 706 | 906 | 974 | 404 | 619 | 573 | 476 | 964 | 555 | 695 | 663 | 516 | 443 | 4 | 4 | 366 | 345 | 325 | 358 | 1100 | | 742 | 5.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | . ur | 320 | 312 | 18929 | 54783,08 | | JULY | 191 | 168 | 178 | 200 | 002 | 194 | 184 | 161 | 145 | ۲۵. | 116 | 110 | 123 | 147 | 147 | 121 | 116 | 112 | 105 | 102 | 76 | 26 | 76 | 147 |)
 | | | | | 80 | ļ | | | | 1790 | 1690 | 69 | 89 | 2 | 1730 | 1760 | 1630 | 1580 | 0561 | 52 | 19 | 67 | 75 | 67 | 58 | 43 | 47 | 7 | 33 | 36 | 31 | 47 | 51
86 | | 47 | 700 | 57 | 7 | 30 | 48440 | 152739 | | | - | 2 | m | 4 | ī. | ¢ | ~ | œ | | | | | | | | 16 | 17 | 13 | 19 | 50 | 21 | 22 | 23 | ን የ
ት ቤ |)
J | 96 | ~ 0 | 5 O | ` @
M | 1,0 | TOTAL | YEAR | | | AUGUST | JULY AUGUST SEPTEMBER 1790 191 923 1310 84 297 626 39 6 | JULY AUGUST SEPTEMBER 1790 191 923 1310 84 297 626 39 6 1690 168 767 1370 79 292 668 40 7 | JULY AUGUST SEPTEMBER 1790 191 923 1310 84 297 626 39 6 1690 168 767 1370 79 292 668 40 7 1690 179 812 1520 128 525 644 37 6 | JULY AUGUST SEPTEMBER 1790 191 923 1310 84 297 626 39 6 1690 168 767 1370 79 292 668 40 7 1690 178 812 1520 128 525 644 37 6 1890 200 1020 1560 154 649 602 37 6 | AUGUST 923 131n 84 297 626 767 137n 79 292 668 812 152n 128 525 644 1020 1560 154 649 602 967
2000 173 934 495 | JULY AUGUST AUGUST SEPTEMBER 1790 191 923 131n 84 297 626 39 6 1690 168 767 137n 79 292 668 40 77 1690 1791 1520 1520 1580 154 644 37 6 1890 200 1020 1560 154 649 602 37 6 1790 200 967 2000 1730 168 785 432 26 3 | JULY 1790 191 923 131n 84 297 626 39 6 1690 1781 1370 79 292 668 40 77 1690 1781 1520 1580 1584 602 37 6 1890 200 1020 1560 154 649 602 37 6 1790 200 967 2000 1730 168 785 432 26 2 | JULY AUGUST | JULY AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST SEPTEMBER SEPT | JULY AUGUST | 1 1790 191 923 131n 84 297 626 39 6 2 1690 168 767 137n 79 292 668 40 7 3 1690 168 767 137n 79 292 668 40 7 4 1690 168 767 1520 158 644 37 6 5 1790 200 1560 173 934 495 32 4 6 1730 194 906 1730 168 785 432 26 26 2 7 1760 184 874 139n 168 793 404 26 2 | 1 1790 191 923 131n 84 297 626 39 6 2 1690 168 767 137n 79 292 668 40 7 3 1690 168 767 137n 79 292 668 40 7 4 1690 178 168 767 1560 156 37 6 4 1690 200 1620 1560 156 37 6 37 6 4 1890 200 1560 173 164 495 32 46 495 33 46 495 32 46 26 | 1 1790 191 923 1310 84 297 626 40 7 2 1690 168 767 1370 79 292 668 40 7 3 1690 168 767 1370 178 649 664 37 6 4 1690 178 1620 1560 1560 157 649 602 37 6 4 1690 200 1020 1560 173 168 765 649 602 37 6 5 1790 194 906 1730 168 785 495 32 26 26 6 1730 161 709 1190 136 785 404 26 26 26 26 7 1760 161 709 1190 136 437 404 26 < | JULY AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST SEPTEMBER S | 1 1790 191 923 131n 84 297 626 39 6 2 1690 168 767 137n 79 292 668 40 7 3 1690 168 767 137n 79 292 668 40 7 4 1690 178 156 156 49 668 40 7 4 1690 178 156 649 662 37 6 5 1790 1920 156 495 33 40 26 37 6 6 1730 194 967 178 495 495 36 26 26 33 404 26 26 26 26 26 26 26 37 404 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 | JULY AUGUST SEPTEMBER 1 1790 191 923 1131n 84 797 626 39 648 40 77 137 128 292 668 40 77 137 128 292 668 40 77 137 128 292 668 40 77 137 128 292 668 40 70 77 137 128 292 668 40 77 74 140 | JULY AUGUST SEPTEMBER 1 1790 191 923 131n 84 292 668 40 7 2 1690 168 767 137n 79 292 668 40 7 3 1690 168 767 137n 178 292 664 40 7 4 1690 168 767 137n 178 292 664 40 7 4 1690 107 136 173 649 662 37 66 40 7 4 | JULY AUGUST | JULY AUGUST | 1790 191 923 1310 84 297 626 39 64 40 64 64 64 64 64 64 | 1790 | 1 1700 191 923 131n 84 297 626 39 2 1690 169 168 167 137n 179 292 668 40 4 1690 178 167 152n 152 668 40 4 1690 200 1020 1560 173 668 40 5 1700 200 1020 1560 173 669 602 37 6 1730 184 906 173n 168 785 432 26 7 1760 184 906 173n 168 785 432 26 8 1540 161 170 119 496 173 437 404 26 1 1540 164 906 173n 168 73 404 26 26 1 1540 164 906 173n 110 110 110 256 437 404 26 1 1570 116 | 1790 191 923 131n 84 297 626 39 2 1690 168 767 137n 79 292 664 37 3 1690 168 767 137n 129 5292 664 40 4 1690 173 1920 156 173 40 40 40 40 40 40 40 40 26 40 40 26 40 31 31 31 31 32 31 31 32 32 40 26 40 31 31 32 32 40 26 40 31 31 32 32 40 40 26 40 26 40 30 31 40 26 40 40 26 40 30 30 38 40 40 26 40 40 40 40 40 40 40 40 40 | 11790 191 923 131n 84 297 626 39 2 1690 168 767 137n 179 292 664 37 4 1690 176 1170 173 194 906 173 173 934 495 37 4 1690 200 1020 1560 173 168 785 644 37 32 4 1790 200 173 168 785 649 37 32< | 1790 191 923 1310 84 297 626 399 64 64 64 64 64 64 64 | 1790 | 1790 | 1790 | 1700 191 923 1310 94 297 668 40 40 40 40 40 40 40 4 | 170 191 767 131 794 292 668 40 767 767 137 794 292 668 40 767 767 794 793 794 668 40 767 767 794 693 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 495 794 694 4 | 1910 1911 1912 1922 1924 6464 409 765 | PHOCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY | / USGS | | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | ; | | |-----------------------------------|--|--------------------------------------|----------|---------------------------------|-------------------------------------|-------------------------------------|---------------------------------|---------------------------------------|--|-------| | AGENCY USGS
COUNTY 020 | | SEDIM
DISCH | | | | | | | | | | SOURCE
STATE 02 | SEPTEMBER 1970 | MEAN
CONCEN-
TRATION
(MG/L) | DECEMBER | | | | | | | | | STREAM
250.00 | 10 | MEAN
DISCHARGE
(CFS) | | 120
120
120
120 | 120
120
120
120
120 | 120
120
120
120 | 120
120
120
130
130 | 130
120
120
120
120 | 110
110
110
110
110
120 | 3700 | | DATUM | R 196 | | | | | | | | | Ю | | 192,00 | YEAR OCTOBE | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | A AK
GE AREA | DAY), WATER | MEAN
CONCEN-
TRATION
(MG/L) | NOVEMBER | | | | | | | | | AT EAGLF RIVFR A | F, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1969 | MEAN
DISCHARGE
(CFS) | | 327
340
300
270
250 | 230
210
200
190 | 170
160
150
150 | 1440
1460
1360
1360 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 130
120
120
120 | 5210 | | EAGLE R
1493332 | CHARGE, SUSP | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | 15277100
LONGITUDE | SEDIMENT DISCHARG | MEAN
CONCEN-
TRATION
(MG/L) | OCTORER | | | | | | | | | STATION NUMBER
LATITUDE 611828 | | MEAN
DISCHAPGE
(CFS) | | 389
275
312
366 | 784
2746
1460
1460
1040 | 1170
1370
1340
1340
943 | 754
656
644
570
485 | 4338
326
303
885 | 2233
2233
2233
2233
2333
2333 | 21924 | | STAFID | | , ∨ C | | ⊸ (v m a li) | 9re001 | 13821 | 179
179
20 | 70078
-0048 | 200
200
300
310 | TOTAL | PROCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY | SOURCE AGENCY USGS
STATE 02 COUNTY 020 | |--| | STREAM
250.00 | | DATUM | | 192.00 | | 00 EAGLE R AT EAGLE RIVER AK
E 1493332 APEA | | EAGLE R
1493332 | | 15277100
LONGITUDE | | STATIOM NURBER
LATITUDE A11828 | SFOIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1969 TO SEPTEMBER 1970 | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | |--------------------------------------|----------|--------------------------|--|---------------------------------|----------------------------|---|----------------------------------| | MEAN
CONCEN-
TRATION
(MG/L) | MARCH | | | | | | | | MEAN
DISCHARGE
(CFS) | | 00000 | 89 89 89 89 89 89 89 89 89 89 89 89 89 8 | 8 8 8 8 8
ទ ព ព ព ព | 90 90 90 90
90 90 90 90 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 80
80
80
80
80
80 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | MEAN
CONCEN-
TRATION
(MG/L) | FEBRUARY | | | | | V | | | MEAN
DISCHARGE
(CFS) | | 00000 | 00000 | 66666 | 00000 | 000,00 | 252
252 | |
SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | WEAN
CONCENT
TRATION
(MG/L) | JANUARY | | | | | | | | MEAN
DISCHAHGE
(CFS) | | 120
110
110
110 | 100
100
100
100 | 100
100
100
100
100 | 955
955
955
955 | 995
995
995
995 | 955
955
95
95
95 | | | | | 9re001 | 11122 | \$ P & B B O | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 26
23
30
31 | PROCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY | STATE 02 COUNTY 020 | SEPTEMBER 1970 | MEAN CONCEN- SEDIMENT TRATION DISCHAMGE (MG/L) (TONS/DAY) | JUNE | | | | | | | | |-----------------------------------|-------------------|---|-------|--------------------------|---|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|-------| | STREAM
DATUM 250.00 | 1969 TO | MEAN
DISCHARGE
(CFS) | | 360
370
400
450 | 410
500
800
700
600 | 700
800
1000
800
700 | 662
698
728 | 754
775
845
929
1010 | 964
985
1120
1210
1150 | 22180 | | 192.00 D | YFAH OCTOBER | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | F RIVER AK
DRAINAGE AREA | (TONS/DAY), WATER | MEAN
CONCENT
TRATION
(MG/L) | МАХ | | | | | | | | | AT EAGLE RIVER AK
DRAINAGE A | SUSPENDED (TON | MEAN
DISCHARGE
(CFS) | | 0 X & 9 & | 86
94
96
98
106 | 127
165
202
267
288 | 276
267
255
255
264 | 279
291
291
294
285 | 288
329
366
366
350 | 6757 | | 100 EAGLE R
JE 1493332 | RGE, | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | 15277100
LONGITUDE | SEDIMENT DISCHA | MEAN
CONCEN-
TRATION
(MG/L) | APRIL | | | | | | | | | STATION NUMBER
LATITUDE 611828 | | MEAN
DISCHAPGE
(CFS) | | 000000
000000 | 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | # # # # # # # # # # # # # # # # # # # | 27
27
27
27
27 | 75
75
75
75
75 | 77
79
81
82 | 1387 | | STATION O | | 740 | | W # 4 # # | 6 × 4 & 0 | 11
12
14
15 | 16
17
19
20 | 22222 | 22
23
33
31 | TOTAL | PHUCESS DATE IS 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY STREAM SOURCE AGENCY USGS 250.00 STATE 02 COUNTY 020 192.00 DATUM 19277100 EAGLE R AT EAGLE RIVER AK LONGITUDE 1493332 OPAINAGE AREA STATION NUMBER I ATTIONE 611928 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | |-----------------------------|---------------------------------------|-----------|--------------------------------------|--------------------------------------|---|-----------------------------------|------------------------------------|--|-----------------| | SEPTEMBER 1970 | | SEPTEMBER | | | | | | | | | | | | 803
776
775
957 | 728
6332
530
458
430 | 6 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 761
698
686
620
535 | 470
428
390
362
352 | | 17636 | | YEAR OCTOBER 1969 TO | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | | | AUGUST | | | | | | | | | SUSPENDED (TONS/DAY), WATER | MEAN
DISCHARGE
(CFS) | | 2090
1820
1700
1450 | 1590
1740
1640
1330 | 1150
1280
1440
1350 | 1290
1210
1250
1310 | 1090
1090
985
866
782 | 761
787
789
810
838
845 | 3846A | | | | | | | | | | | 165838 | | SPOIMENT DISCHARGE. | ME AN
CONCEN-
TRATION
(MG/L) | JULY | | | | | | | | | | MEAN
DISCHAPGE
(CFS) | | 1180
1240
1310
1340
1310 | 1180
1080
1160
1390
1310 | 1230
1230
1200
1140 | 971
936
1040
1050
971 | 1010
1010
971
999
1150 | 1390
1750
2060
2110
2370 | 40378
166338 | | | } v C | | 000410 | & C & & & O | 10646 | 20
20
20
20 | 22
23
24
25
25 | 25
25
25
30
31 | TOTAL.
YFAR | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY PRUCESS DATE IS 12-03-81 | AGENCY USGS
COUNTY 020 | | SEDIMENT
Discharge
(Tons/Day) | | | | | | | | | |-----------------------------------|--------------------------------|--------------------------------------|----------|---------------------------------------|---------------------------------|------------------------------|--|----------------------|---------------------------------------|-------| | SOURCE A
STATE 02 | TO SEPTEMBER 1971 | MEAN
CONCEN-
TRATION
(MG/L) | DECEMBER | | | | | | | | | STREAM
DATUM 250.00 | 1970 TO SEPT | MEAN
DISCHARGE
(CFS) | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8
8
8
8
8
8
8 | 78
78
87
87
87 | 37
36
37
37
37 | 44440
44440 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2320 | | 192.00 DA | YEAR OCTOBER 1970 | SEDIMENT
PISCHARGE
(TONS/DAY) | | | | | | | | | | F RIVER AK
DRAINAGE AREA | E, SUSPENDED (TONS/DAY), WATER | MEDN
CONCEN-
TRATION
(MG/L) | NOVEMBER | | | | | | | | | AT EAGLE RIVER AK PRAINAGE A | PENDED (TONS | MEAN
DISCHAPGE
(CFS) | | 160
120
110
130 | 140
130
115
115 | 105
100
98
96
94 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 8 8 8 8 8
4 4 4 4 | 9 9 8 8 8 6 1
4 4 5 5 5 5 1 | 3086 | | EAGLE R
1493332 | | SEDIMENT
OISCHARGE
(TONS/DAY) | | | | | | | | | | 15277100
LONGITUDE | SFDIMENT DISCHARG | MEAN
CONCEN-
TRATION
(MG/L) | OCTORER | | | | | | | | | STATION NUMBER
LATITUDE 611828 | | MFAN
DISCHAMGE
(CFS) | | 300
300
297
264
31 | 255
249
230
220
210 | 2000
1900
170
173 | 153
151
155
135
80 | 1120
110
100 | 100
110
130
160
180 | 5599 | | STATION : | | Ç | | ⊸~~4 <i>w</i> | 3 t & 6 0 1 | | 20 C | 22222 | 330 | TOTAL | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY STHEAM SOURCE AGENCY USGS 192.00 DATUM 250.00 STATE 02 COUNTY 020 15277100 EAGLE R AT EAGLE RIVER AK LONGITUDE 1493332 DRAINAGE AREA STATION NUMBER LATITUDE 611828 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | |----------------------------------|--------------------------------------|----------|--|--|------------------------------------|-------------------------------|---|--|-------| | SEPTEMBER 1971 | MEAN
CONCEN-
TRATION
(MG/L) | MARCH | | | | | | | | | 10 | MEAN
DISCHARGE
(CFS) | | 4444
90044 | 88888
88888 | 144
100
000 | 6 6 6 6 6
6 6 6 6 | 88888 | 33.4 | 1244 | | YEAR OCTOBER 1970 | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | RGE, SUSPENDED (TONS/DAY), WATER | MEAN
CONCEN-
TRATION
(MG/L) | FEBRUARY | | | | | | | | | ENDED (TONS | MEAN
DISCHARGE
(CFS) | | ດ ດ ດ ດ ລ
ທ ທ ທ ທ ທ | ™ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ი გ. გ. გ. გ.
დ. ტ. გ. გ. გ. წ. | ວວວ <i>ກກ</i>
ພະບອນ | 044'44
COOKK | 444 | 1456 | | DISCHARGE, SUSP | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | SFDIMENT DI | MEAN
CONCEN-
TRATION
(MG/L) | JANUARY | | | | | | | | | | MEAN
DISCHARGE
(GFS) | | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | \$ 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | တွင် ည ဂူ လ
တွင် & ထို ဧ | ՆՆՇՆՆ
ՀՀՕ 44 | ው
ዓ ት ዓ ር ረ ር
ዓ ር ረ ር | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 1774 | | | ≻ ∧ ∩ | | N W 4 W | <pre>creec</pre> | 1112
127
137
137 | 2000 | 1000
1000
1000
1000
1000
1000
1000
100 | 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | TOTAL | PROCESS DATE 15 12-03-81 UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY | AGENCY USGS
COUNTY 020 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 457.4 | 213
249
335
455
708 | 492
272
282
400
394 | 218
1167
1103
147 | 247
167
216
367
718 | 1330
1280
1080
873
732 | 11634 | |-----------------------------------|------------------------------------|---------------------------------------|-------|---------------------------|---------------------------------|---------------------------------|--|--|--------------------------------------|-------| | SOURCE
STATE 02 | SEPTEMBER 1971 | MEAN
CONCEN-
TRATION
(MG/L) | JUNE | 366
246
245 | 385
385
385
365
400 | 268
158
155
200
174 | 110
87
71
72
100 | 136
90
110
140 | 300
260
240
220
198 | i | | STREAM
M 250.00 | 1970 TO SEPTE | MEAN
DISCHARGE
(CFS) | | 143
1239
143
163 | 243
312
382
462
656 | 680
638
674
740
838 | 734
626
5336
520
545 | 674
686
728
971
1400 | 1640
1820
1670
1470
1370 | 21737 | | 192.00 BATUM | YEAR OCTOBER 1 | SEUIMENT
DISCHARGE E
(TONS/DAY) | | | | | | | | | | E RIVEK AK
DRAINAGE AREA | | MEAN
CONCEN-
TRATION
(MG/L) | МАУ | | | | | | | | | AT EAGLE RIVEH
DRAINAGE | HARGE. SUSPENDED (TONS/DAY), WATER | MEAN
DISCHARGE
(CFS) | | 355
355
475
77 | 24
20
20
20
20 | 44000
ഗസരട | 55
60
80
120 | 140
120
120
130 | 140
133
133
143
139 | 2546 | | EAGLE R
1493332 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | 15277100
LONGITUDE | SEDIMENT DISC | MEAN
CONCEN-
TRATION
(MG/L) | APRIL | | | | | | | | | STATION NUMBER
LATITUDE 611829 | | MEAN
DISCHARGE
(CFS) | | mmmm
7 + 7 + + | 34
34
34
36
36 | 38888 | 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | •
N2NNNN
• N2NNNN
• N2NNNNN | 1070 | | STATION LATITUDE | | 7 8 9 | | -0r45 | & r & e o o | 1122451
22451 | 20
20
20 | 22
22
24
25
25 | 22
23
30
31
31 | TOTAL | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY PROCESS DATE IS 12-03-81 | STREAM SOURCE AGENCY USGS | DATUM 250.00 STATE 02 COUNTY 020 | |---------------------------|----------------------------------| | | 192.00 D | | AT EAGLE RIVER AK | 1493332 NRAINAGE AREA | | FAGLE R | 1493332 | | 15277190 | LONGITUDE | | STATION NUMBER | LATITUDE 611828 | SFOIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1970 TO SEPTEMBER 1971 | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | |--------------------------------------|-----------|--------------------------------------|--------------------------------------|--|---|------------------------------|--------------------------------------|-----------------| | MEAN
CONCEN-
TRATION
(MG/L) | SEPTEMBER | | | | | | | | | MEAN
DISCHARGE
(CFS) | | 1290
1220
1050
898
881 | 804
662
601
564
531 | 495
471
461
468 | 4 3 4 5 5 6 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 502
427
380
354 | 330
307
290
284
277 | 16570 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | | | | | | | | | MEAN
CONCEN-
TRATION
(MG/L) | AUGUST | | | | | | | | | MEAN
DISCHAPGE
(CFS) | | 1800
1900
1700
1400
1200 | 1500
2000
3000
4500
4000 | 3500
2800
2800
2940
2560 | 2200
1990
2050
1870
1670 | 1590
1650
1580
1450 | 1350
1240
1070
1030
1110 | 62050 | | SEDIMENT
DISCHARGE
(TONS/DAY) | | 522
404
319
292
334 | 425
657
1290
1800
3400 | 4830
4720
14400
15300
7540 | 4230
2820
2110
1560
2060 | 1920 | | 70933
82567 | | MEAN
CONCEN-
TRATION
(MG/L) | JULY | 168
129
120
120 | 130
175
318
405
655 | 820
725
1810
1650
950 | 640
500
400
325
365 | 32 | !!!!!! | • | | MEAN
DISCHANGE
(CFS) | | 1150
1010
922
901
1030 | 1210
1390
1500
1650 | 2180
2410
2950
3430
2940 | 2450
2090
1950
1780
2090 | 2030
1700
1500
1150 | 1500
1800
2100
1800
1500 | 54933
174385 | | P.A.Y | | ለ፡፡ 4 ፲፡ | & F & & O . | 120
20
45
1 | 2118
20
20 | 35,35,7 | 339999
34999
34999 | TOTAL | NUMMER OF MISSING DAYS OF RECORD EXCEEDED 20% OF YEAR NOTE: Exhibit B Additional Testing ## ■■ Exhibit B ■■ ADDITIONAL TESTING It was concluded from Task 1, Well Drilling Program, that no significant groundwater supply exists in the Eagle River Valley. Emphasis was then placed on the study of Eagle River surface water as a potential means to meet the growing water demands of the Municipality of Anchorage. To supplement the data presented in this report for Task 3, Flour Water Treatment Study, samples of water were taken from eight sites along the Eagle River between January and June 1981 and were tested for quality. This Exhibit contains the data from this supplemental testing. The water sampling sites are shown on Figure B-1. Site A, Eagle River 200 Feet Upstream of Glenn Highway, Right Bank, corresponds to the Task 3 testing site. Other sites were chosen at various points to identify potential contamination sources. Coliform tests were performed on samples from all the sites; however samples from Sites C and E were not tested on a regular basis. The results of these tests are shown in Table B-1. Complete State of Alaska drinking water standard tests were performed on water from Sites A and D on a regular basis, and from Sites E and H less frequently. The results of these tests are summarized in Tables B-2 and B-3. Analysis of the results of the additional testing indicates that the Eagle River surface water should be suitable for human consumption if the proper treatment is applied to it. If this water is selected as a future drinking water source, it is recommended that further, more detailed water quality tests be conducted. Additionally, there are indications that groundwater is moving from the vicinity of the old Eagle River dump to the river. If the lower damsite (see Appendix II) is chosen for development, the potential impacts of the old dump on the river should be thoroughly analyzed. Figure B-1 Sampling Sites for Additional Tests Table B-1 COLIFORM ANALYSIS JANUARY THROUGH JUNE 1981 | Site ^a | Date | Fecal
Coliform | Total
Coliform | |-------------------|--|-------------------------|---| | Site A | 01/22/81
02/24/81
03/19/81
04/01/81
04/08/81
04/22/81
05/15/81
06/23/81 | 0
2
0
0
11 | 9
33
TNTCb
2
6
TNTC
2
TNTC | | Site B | 04/01/81
04/08/81
04/22/81
05/15/81
06/23/81 | 2
1
3
1
25 | 3
17
11
0
TNTC | | Site C | 03/19/81 | | 52 | | Site D | 03/19/81
04/08/81
04/22/81
05/15/81
06/23/81 | 0
17
0
400 | TNTC
5
TNTC
TNTC
TNTC | | Site E | 02/24/81
04/01/81 | 0 | 4
0 | | Site F | 04/01/81
04/08/81
05/15/81
06/23/81 | 1
1
0
28 | 4
18
2
TNTC | | Site G | 04/01/81
04/08/81
04/22/81
05/15/81
06/23/81 | 32
1
3
0
54 | 35
0
TNTC
10
TNTC | | Site H | 04/01/81
04/08/81
04/22/81
05/15/81 | 8
2
0
0 | 22
31
3
8 | ^aRefer to Figure B-1 for description of sites. bToo numerous to count. Table B-2 INORGANICS JANUARY THROUGH JUNE 1981 | <u>Site</u> ^a | Date | As | Ba | Cd | Cr | <u>_</u> F | _Fe_ | Pb | <u> Mn</u> | Hg | Nitrate-N | _ <u>Se</u> _ | Ag | Na | |--------------------------|----------|--------|----------------|---------|--------|------------|------|--------|------------|---------|-----------|---------------|--------|-----| | Site A | 01/22/81 | ~ 0.01 | <0.5 | < 0.010 | < 0.01 | < 0.1 | 0.11 | <0.01 | | < 0.001 | 0.86 | | < 0.01 | 2.7 | | | 02/24/81 | ~ 0.01 | <0.5 | < 0.010 | < 0.01 | < 0.1 | 0.12 | < 0.01 | 0.03 | < 0.001 | 0.62 | < 0.01 | < 0.01 | 2.9 | | | 03/19/81 | < 0.01 | < 0.5 | < 0.010 | < 0.01 | < 0.1 | 0.50 | < 0.01 | 0.04 | < 0.001 | 0.38 | < 0.01 | < 0.01 | 2.5 | | | 04/22/81 | < 0.01 | < 0.5 | < 0.010 | < 0.01 | < 0.1 | 0.68 | < 0.01 | 0.07 | < 0.001 | 0.86 | < 0.01 | < 0.01 | 2.9 | | | 05/15/81 | < 0.01 | 0.013 | < 0.010 | < 0.01 | < 0.1 | 0.21 | < 0.01 | 0.02 | < 0.001 | 0.90 | < 0.01 | < 0.01 | 2.9 | | | 06/23/81 | < 0.01 | √0.5 | < 0.010 | < 0.05 | < 0.1 | 1.6 | < 0.01 | 0.04 | < 0.001 | 0.21 | < 0.01 | < 0.01 | 1.7 | | Site D | 03/19/81 | < 0.01 | <0.5 | < 0.010 | < 0.01 | 0.23 | 8.9 | < 0.01 | 1.0 | < 0.001 | 0.15 | < 0.01 | < 0.01 | 2.9 | | | 04/22/81 | 0.01 | < 0.5 | < 0.010 | < 0.01 | < 0.1 | 2.5 | < 0.01 | 0.20 | < 0.001 | 0.17 | < 0.01 | < 0.01 | 3.0 | | | 05/15/81 | < 0.01 | <0.5 | < 0.010 | < 0.01 | < 0.1 | 0.88 | < 0.01 | 0.06 | < 0.001 | 0.29 | < 0.01 | < 0.01 | 3.7 | | | 06/23/81 | < 0.01 | <0.5 | < 0.010 | < 0.01 | < 0.1 | 0.1 | < 0.01 | < 0.01 | < 0.001 | 0.17 | < 0.01 | < 0.01 | 4.2 | | Site E | 02/24/81 | < 0.01 | <0.5 | <0.010 | < 0.01 | < 0.1 | 0.13 | < 0.01 | 0.03 | < 0.001 | 0.60 | < 0.01 | < 0.01 | 3.3 | | Site H | 04/22/81 | < 0.01 | < 0.5 | < 0.010 | < 0.01 | < 0.1 | 0.34 | < 0.01 | 0.02 | < 0.001 | 0.42 | < 0.01 | < 0.01 | 3.0 | ^aRefer to Figure B-1 for site descriptions. Table B-3 COLOR, TURBIDITY, ORGANICS, AND RADIOACTIVITY JANUARY THROUGH JUNE 1981 | | | | | | Organics | | | | | | Radioactivity | | | | |--------|--|---|-----------------------------------|--|--|---|--|---|--|--|--|--|--|--| | Sitea | <u>Da te</u> | Color | Turbid-
ity | <u>Endrin</u> | Lindane | Methox-
ychlor | Toxa-
phene | 2,4D | 2,4,5-TP
Silvex | Gross A | Cross B | Lab ^b | | | | Site A | 01/22/81
02/24/81
03/19/81
04/22/81
05/15/81
06/23/81 | 5.0
10.0
20.0
15.0
20.0
20.0 | 0.55
0.44
4.2
4.8
2.3 | < 0.0002
< 0.0002
< 0.0002
< 0.0002
< 0.0002
< 0.0002 | <0.004
<0.004
<0.004
<0.004
<0.004
<0.004 | < 0.1
< 0.01
< 0.1
< 0.1
< 0.1
< 0.1 | < 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005 | < 0.1
< 0.01
< 0.1
< 0.1
< 0.1
< 0.1 | <0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | 9.0 ± 1.0
7.2 ± 1.0
6.2 ± 1.3
0.2 ± 1.2
7.5 ± 2.3
0.0 ± 0.9 | 4.5 ± 1.1
8.1 ± 1.3
1.8 ± 4.7
2.9 ± 4.3 | Chem. & Geo.
Chem. & Geo.
Chem. & Geo.
CH2M HILL
Chem. & Geo.
CH2M HILL | | | | Site D | 03/19/81
04/22/81
05/15/81
06/23/81 | 150.0
15.0
70.0
10.0 | 64.0
26.0
39.0
0.6 | < 0.0002
< 0.0002
< 0.0002
< 0.0002 | <0.004
<0.004
<0.004
<0.004 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.005
< 0.005
< 0.005
< 0.005 | < 0.1
< 0.1
< 0.1
< 0.1 | <0.01
<0.01
<0.01
<0.01 | 1.8 ± 0.6
6.4 ± 0.9
4.5 ± 2.1
0.0 ± 1.3 | 2.1 <u>+</u> 5.3 | Chem. & Geo.
Chem. & Geo.
Chem. & Geo.
CH2M HILL | | | | Site E | 02/24/81 | 10.0 | 2.5 | < 0.0002 | <0.004 | < 0.1 | < 0.005 | < 0.1 | <0.01 | 8.1 <u>+</u> 1.3 | 11.7 ± 1.5 | Chem.
۵ Geo. | | | | Site H | 04/22/81
05/15/81 | 5.0 | 2.3 | < 0.0002 | <0.004 | < 0.1 | < 0.005 | < 0.1 | <0.01 | -0.9 ± 2
-0.1 ± 0.8 | 4.5 ± 5.0
-0.5 ± 3.6 | CH2M HILL
CH2M HILL | | | ^aRefer to Figure B-1 for site descriptions. ^bThe reliability of the tests performed by a laboratory in Wyoming for Chemical and Ceological Laboratories of Alaska, Inc., is questionable.